隧道窑加热燃烧设备用分体式好还是组装型好?

简介:写写帮文库小编为你整理了多篇相关的《页岩生产烧结砖应达到的几种要求》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《页岩生产烧结砖应达到的几种要求》。

页岩生产烧结砖应达到的几种要求

来源:河南隆迪重工电子机械有限公司 上传时间: 浏览次数:126次

字体大小: 大 中 小

页岩生产烧结砖应达到的几种要求

页岩是粘土岩的一种。页岩成分复杂,除粘土矿物(如高岭石、蒙脱石、水云母、莫来石等)外,还含有许多碎屑矿物(如石英、长石、云母等)和自生矿物(如铁、铝、锰的氧化物与氢氧化物等)。页岩具有页状或薄片状层理,用硬物击打易裂成碎片。页岩是由粘土物质经压实作用、脱水作用、重结晶作用后形成的。

常见的页岩有:①黑色页岩②碳质页岩③油页岩④硅质页岩⑤铁质页岩⑥钙质页岩。 1.1黑色页岩

岩石中含有较多的有机质或细分散状的硫化铁而呈黑色。外貌与炭质页岩相似,其区别在于不染手。黑色页岩一般形成于缺氧、富含H2S的较闭塞海湾和湖泊的较深水地区。如我国北方白垩系中的黑色页岩中含有丰富的有机质和介形虫、孢粉等微体古生物,是重要的生油岩系。

这种页岩中含有大量呈细分散状均匀分布于岩石中的炭化有机质,黑色、能染手。但灰分>30%,一般很难作燃料。常含大量植物化石,是湖泊、沼泽环境下的产物,出现于煤系中,常形成煤层的顶板与底板。

油页岩是含有一定数量干酪根(>10%)的页岩。颜色有浅黄、黄褐、暗棕、棕黑、黑色等。一般来说,含有机质愈多,其颜色也愈深。其特点是比一般的页岩轻,而且有弹性,用小刀刮之,往往可成刨花状的薄片。易燃,并发出沥青味及流出油珠。油页岩属于页岩的范畴,但具有腐泥煤的特征,也有人把它叫做“高灰分的腐泥煤”。油页岩主要是在闭塞海湾或湖沼环境中由低等植物如藻类及浮游生物的遗体死亡后,在隔绝空气的还原条件下形成的,常与生油岩系或含煤岩系共生。

页岩中Si02平均值约58%,而硅质岩中的Si02,可达85%以上。在富含高岭石的硅质泥岩、页岩中,常保存有硅藻、海绵和放射虫化石,所以一般认为这种岩石中硅质的来源与生物有关,有的也可能和海底喷发的火山灰有关。故硅质页岩中含有较多的玉髓、蛋白质等。

岩石中含有铁矿物,铁质矿物作为色素使岩石带色,多呈红色或灰绿色。红色铁质泥岩和页岩一般与砂岩共生,构成所谓“红层”,在我国中、新生代地层中分布很广。呈红色主要足由于沉积物在陆相干旱、半干旱气候条件的氧化环境下,被三价铁渲染的结果。

岩石中含有碳酸钙,分布很广。常见于大陆和海陆过渡环境的红色岩系中,浅海和泻湖沉积的钙泥质岩系中也很常见。如我国北方下寒武统馒头组、南方三叠系青龙群中的页岩,大部分为钙质页岩。

大部分页岩是生产烧结砖瓦的比较好的原料,但也有一部分页岩不能用来生产烧结砖。究其原因,就是这一部分原料的物理和化学性能不能满足烧结砖对原料的性能要求。

2、页岩的物理性能 页岩的硬度一般为普氏硬度系数1.5~3,结构比较致密的,其普氏硬度系数可以达到4~5,有的硬质页岩的硬度更高。

页岩的颗粒组成与它的自然颗粒级和成岩原因有关,颗粒组成变化的波动幅度较大,从而影响页岩的其他性能。

根据形成岩石时沉积情况的不同,页岩的塑性指数范围在5~23,有的页岩的塑性指数甚至超出了这一范围。故有的页岩实际上是不能作为烧结砖的原料的。

页岩原料的干燥敏感性的高低,表现为多种多样的形式。通常用干燥敏感性系数来衡量,它的范围一般在0.4-1.6之间,对于有些塑性非常高的页岩来说,它的干燥敏感性系数可能更高。

页岩的干燥线收缩率,根据其种类不同也有很大的变化,其变化范围在2.5%-10%。

不同的页岩,其化学成分指标也是不一样的,自然界存在的页岩,其化学成分含量变化也是比较大的。一般隋况下,页岩的Si02,含量在45%~80%之间波动,A12O3量在12%-25%之间波动,Fe2O3含量在2%-10%之间波动,CaO含量在0.2%-12%之间波动,MGO含量在0.1%-5%之间波动。

4、生产烧结砖时对页岩原料物理性能的要求生产页岩烧结砖时,对页岩的物理陛能的要求是:页岩的普氏硬度系数小于4,粉碎后粒度小于2mm。塑性指数为7%- 15%,干燥线收缩在3%—8%,烧成线收缩的变化范围为2%-5%,干燥敏感性系数要求的范围是0%—1.5%,烧成温度范围的要求>50度。原料颗粒级配符合原料成型后颗粒最紧密堆积原理。

5、生产烧结砖时对页岩原料化学性能的要求

用页岩原料生产烧结砖时,如果主要成分在制砖要求含量的范围以内,则会使生产较顺利的进,如果某种成分超出了原料的要求范围,就要对烧成过程进行相应的调整。

如原料中大颗粒Si02含量多时,一方面将增加制品的耐火度,提高制品的烧成温度,干燥收缩小、干燥敏感性低起到瘠化剂的作用。另一方面,由于Si02在烧成过程中要进行晶型转换,使其体积发生变化,如果控制不好,会造成制晶缺陷,降低制品的力学强度,特别是抗折强度。可是小颗粒的Si02易于熔融,使制品结构均匀、密实,当原料中Si02含量大于75%时,对制品的烧成过程是不利的。如果含量超过80%,烧成后制品的体积不但不收缩,反而发生膨胀,使抗折强度大大降低。与此相反,当原料中Si02含量小于于50%时,则制品抗冻性能很差。

Al2O3是耐火度很高的氧化物,它是砖瓦产品中必不可少的组分,它赋予制品一定的力学强度,当原料中Al2O3的含量小于10%时,烧成制品的力学强度较低,提高原料中Al2O3,的含量,可使制品的力学强度增加。但烧成温度也将随之升高,燃料消耗量增大。

Fe2O3在砖瓦产品的烧成过程中起到几方面的作用:①它是一种着色剂,能使制品颜色发生变化,当窑内为氧化气氛时,铁是以高价形式存在,制品呈红色,当窑内为还原性气氛时,铁是以低价形式存在,制品呈黑色或青蓝色;②在还原性气氛中,以低价形式存在的铁,是一种强有力的助熔剂,能降低原料的耐火度;③大颗粒的铁氧化物在制品烧成中会出现褐色或黑色斑点。

CaO虽然是一种助熔剂,但它不利于制品烧成,表现在:①含量过高时会缩小原料的烧成温度范围,给烧成带来困难;②会与含铁的矿物化合,使制品的红色得到漂白,而变为黄色或者浅黄色;③大颗粒的CaO存在于烧成后的制品中,会产生石灰“爆裂”,影响制品强度,甚至使制品失去使用功能。所以,原料中CaO含量越低越好,如果含量高,则应将其破碎350.5mm以下,烧成时,应适当提高烧成温度,让CaO与其他组分充分结合,达到“死”烧的目的。

MgO虽然起助熔作用,但如果它与SO3结合。会产生MgSO4,MgSO4却是有害于制品的,会使制品泛白霜、体积膨胀,破坏其结构,降低强度。

Na+、K+化合物在烧成过程中主要起助熔作用,并能赋予制品强度。

当我们对自己生产所用的原料有了全面、准确的认识后,就可根据各组分含量的多少,对烧成过程进行准确的控制,根据Si02晶型转化、发生体积膨胀的规律,控制烧成的升温速度和冷却的降温速度。当Si02颗粒较大,含量较高时,应适当提高烧成温度,当Si02颗粒较小,含量较低时,可适当降低烧成温度。根据原料中Al2O3含量的高低,确定制品的烧成温度,为Al2O3与其他组分的结合,提供必要和充分的烧成条件。当Al2O3含量较高时,采用较高的烧成温度,当Al2O3含量较低时,采用适宜的烧成温度,按照GaO含量的多少,制定制品的烧成温度范围。当CaO含量高时,烧成温度范围要小一些,应注意烧成温度的波动范围不要太大,否则会出现欠火砖,或者过火砖。

6、哪些页岩可以生产烧结砖

到底什么样的页岩可以生产烧结砖?从上面的分析可以看出,只有符合物理和化学两种性能要求的原料,才能生产出合格的烧结砖。

当页岩的物理性能符合塑性指数为7%-15%,干燥线收缩在3%-8%,烧成线收缩的变化范围为2%-5%,干燥敏感性系数要求的范围是0%-1.5%,烧成温度范围的要求>50℃,普氏硬度系数小于4,就能满足生产时对其物理陛能的要求。

所以,同时符合物理和化学两种性能要求的页岩,就可以生产烧结砖。

河南隆迪重工有限公司是生产制砖成套设备的专业厂家,产品主要有码坯机、切坯机、切条机系列。公司长期致力于砖瓦行业自动化及无人化辅机设备的研发与应用,拥有完整的切条、切坯、码坯系列产品。销售热线:,诚挚期待与您携手共创和谐美好明天。

6.9米窑炉余热利用余热锅炉项目方案

黄冈市华窑中扬窑业有限公司

(一)隧道窑余热锅炉利用

建材行业是耗能大户,尤其是我国的能耗指标远远高于欧美发达国家。节能减排,保护环境是建材行业必须解决的大事。利用煤矸石制作烧结多孔砖项目本身就是节能、利废、环保项目,该项目消耗煤矸石等废渣且节约大量土地,但如何对生产过程中产生的大量余热进行合理利用一直是砖厂的难题,如果这一问题得到合理解决,余热得到合理利用,将使该项目更趋完美,同时余热的合理利用也会成为该项目的一个经济增长点。

煤矸石制作烧结多孔砖,是利用煤矸石本身所含热能烧砖,在焙烧窑内经过预热、烧结、冷却三个过程。煤矸石多孔砖烧成温度通常为920℃~980℃经过高温焙烧、保温后进入冷却段,砖体温度仍可达到800℃左右,此时多孔砖已烧结,晶型转化基本完成。在正常生产过程中,冷却带在800℃左右就已经开始了,进入冷却带的多孔砖带有大量热量,这部分热量通过热辐射、对流的方式向窑顶、窑墙、窑车以及助燃空气传递,致使窑体、窑车和多孔砖本身蓄热偏多,最终散发到大气中,造成极大的浪费。焙烧窑生产是连续性的,在冷却段每个位置的环境温度也是相对稳定,此时的热源洁净无烟尘,这就为余热利用提供了稳定的热源。

2 、余热利用现状及问题

目前,煤矸石烧结多孔砖隧道窑余热利用在生产过程中得到广泛应用,其利 用方式主要有以下几个方面:

余热干燥是利用风机从焙烧窑冷却段抽取热风,送往干燥室干燥砖坯。为满 足余热干燥抽取热风的需要,在窑体冷却段设置多组取热支管,在送热风机的作 用下,热风首先通过支管进入送热总管道,而后被送入干燥室干燥砖坯。取自焙 烧窑冷却段的热气体无尘且无有害气体,热源可使成型后湿砖坯进行干燥,含水 率由

13%左右降至3%左右,以便使砖坯进入焙烧窑后易于燃烧。干燥水气 经排风机排空,这是目前焙烧窑余热的主要利用方式。

2.1.2厂内职工洗浴与采暖

在焙烧窑冷却带安放两台换热器,抽取窑内热气作为热源与换热器中冷水进 行热交换,经过换热器交换的热气联入干燥室送热管道,换热后的热水通过管道 泵送入浴室和采暖管道,满足厂内职工洗浴和厂区的采暖。

2.1.3工人工作服烘干

有的砖厂引抽余热管道一组制作成散热器,烘烤工人工作服。

焙烧窑冷却带加茶水炉,通过管路抽取窑内余热加热烧水,可保证全厂职工 饮水。

上述余热利用已在矸石砖厂广泛应用,如山东华恒矿业集团年产6000万标块 煤矸石砖厂生产线可同时满足3000名矿工的洗澡、工作服烘干和砖厂220员工 饮水。

上述几种余热利用方式是最常见的,但在实际生产过程中均存在不同程度的 问题。主要体现在以下几个方面:

2.2.1扰乱风路,影响生产

以上几种余热利用方式的共同点就是从焙烧窑冷却带以气流的方式抽取多余的热量,此种方式势必会对窑内气流造成影响,形成湍流,影响制品的烧成质量。同时,若送热风机抽力增加时也会造成气体回流,影响烧成。

2.2.2受设备限制,很难达到预期

换热器的设置目的是合理地利用焙烧窑余热,同时调节窑内烧成温度曲线。 但进入换热器的热风的车位温度会根据原料的发热量、窑内进车速度改变而改变, 而换热器进口最高温度是固定的,这便造成由于温度过高换热器无法使用或温度 过低而无法达到换热目的。另外,还存在夏季经过换热产生的热水没有用途而浪 费的问题。

经过换热器换热的热水在输送过程中的损失大,饱和热水的动力黏度系数为 149.8Mpa.S,当热水在冬季到达目的地后温度要下降很多,往往还需二次加热,利用率明显降低。

3、余热利用方式—采用低压余热锅炉

鉴于以上余热各种利用方式的利弊关系,必须研究更科学的利用方式,而采用低压余热锅炉应该是今后发展的方向。在焙烧窑上设置余热锅炉,既要保持合理的焙烧曲线,又能产生足够的蒸汽,满足生产及生活需要。如前所述,焙烧窑按温度曲线可分为预热带、焙烧带、冷却带。由于预热带温度低、水汽大,显然不适合装设锅炉;如装设在焙烧带高温段,又不利于砖坯的充分烧结;若装在冷却带,虽然可以从这里吸收一定的热量,但产汽量往往不能满足生产和生活的需要。为使余热锅炉达到既不能影响砖坯的烧结质量,又能产生足够蒸汽的要求,锅炉一般装设在焙烧带前端比较有利。因为这一区间内,砖坯残余水分已经排除,坯体内部能量开始爆发,锅炉从这里吸收一部分热量并不会影响焙烧;另外,如果坯体发热量高,锅炉还可以从这里吸收大量的热量,防止高温段和冷却段温度过高,解决超热焙烧问题。但对于含硫过高的原料,在焙烧带前端仍有大量二氧化硫气体,势必会腐蚀设备,所以此时可以考虑将锅炉设置在焙烧保温段后800℃左右区域。

以现有断面6.9m焙烧窑一条为例,其年产量可达3300万Kp1烧结多孔砖,焙烧窑热平衡见表一。

日产10万Kp1焙烧窑每小时热平衡表 表一热平衡项目

热量(万大卡) 平均一块砖坯热量(大卡) 比例(%)锅炉吸热

从热平衡表中得到,日产10万kp1烧结砖焙烧窑每小时可提供热量约200 万大卡,而每生产1t蒸汽需要的热量约为64.4万kcal,在不影响砖厂正常生产的情况下,利用余热可以满足安装3t蒸汽锅炉需要。

根据原料理化性能指标,在高温带前端或保温带后端选择一定车位通过采集 管采集余热;在保证烧成操作正常进行的情况下,以安全可靠的采热、换热方式,充分实现“水-汽”交换。其主要工艺过程为: ①余热采集,换热用水采用软化水; ②水汽分离,液态水循环利用;

③蒸汽运输,运输管道采取标准化保温处理; ④蒸气利用。 3.4 余热利用效果

利用煤矸石制作烧结多孔砖,不仅节能利废生产合格产品,还能为余热利用 节能减排创出一条新路,创造了良好的经济效益和社会效益。

3.4.1余热干燥节约煤炭

断面6.9m干燥室,其年干燥烧结多孔砖坯3300万Kp1,干燥室热平衡见表二。

日产10万Kp1干燥室每小时热平衡表

热量(万大卡)比例(%)

烧结页岩多孔砖和空心砖砌体结构技术规程

项目介绍本项目针对重庆墙材现状和建筑节能对墙材的要求的严峻形势,以现有页岩砖厂技改实现升级换代,实现墙材结构调整,提高墙材生产施工技术水平,为建筑节能提供经济实用、性能良好的节能墙体为目标,系统研究页岩多孔砖、空心砖的生产工艺、施工和砌体物理力学性能,页岩多孔砖及空心砖砌筑砂浆、保温砂浆等配套材料,页岩多孔砖墙体构造、施工工艺及性能,为页岩多孔砖、空心砖的生产应用奠定坚实的基础。本项目的实施将实现我市实心砖向空心砖的转变,为我市全面实施建筑节能作好墙材产业准备。对我市传统建材产业的结构调整和建筑业的科技进步有显著的推动和牵引作

重庆市建设委员会办公室 二○○七年七月九日

我市建筑节能经济适用技术路线取得突破 高效节能型烧结页岩空心砖在渝研制成功

日前,一种高效节能型烧结页岩空心砖、厚壁节能型烧结页岩空心砖在我市研制成功并通过了我委组织的科技成果专家鉴定。这是我市自行研制、拥有自主知识产权的高效节能型建材,在全国率先攻克了用烧结页岩空心砖进行自保温节能设计的难题,将有效降低建筑节能综合造价和建筑使用能耗,标志着我市建筑节能经济适用路线研究取得了突破性进展。

我市是全国页岩资源最丰富的地区之一,烧结页岩制品的研发实力也较为雄厚。该建材的研制严格按照建筑节能的使用要求,对原料开采、储放、破碎、制粉、搅拌、泥料陈化、挤制成型、制坯、干燥及焙烧等工艺环节进行了研究改进,孔型为有序交错排列的27孔,外壁厚为25~27mm,通过改善砖型、孔型、孔排列,减小大面及肋厚和原料配比等技术措施,热工性能及体积稳定性有了显著提高,传热系数较同类产品降低20%,抗压强度较同类产品提高80%。 研究确定适合我市实际的建筑节能经济适用路线是我委明确的一项建筑节能重点工作,关乎建筑节能工作全局,对贯彻落实“314”总体部署、转变建设行业经济增长方式、推动建筑节能产业健康发展都具有非常重要的现实意义。目前,全国的建筑节能体系基本都沿用北方的技术体系,即外墙外保温体系,以给建筑穿“外衣”的方式来达到保温隔热的目的。但这种方式是否也适用于南方地区,在学术上存在较大争议。该建材的研制成功给南方地区特别是给我市建筑节能提供了一种新的技术体系,即烧结页岩空心砖自保温体系,这是建筑节能技术体系的重大发展和补充。该体系的推出为地方资源的开发利用探索出了一条新路,也为推动建筑节能技术的系统化、多样化、资源化提供了一种新的途径,将在今后我市建筑节能工作中产生较为深远的影响。(来源:科教处)

烧结页岩多孔砖和空心砖砌体结构技术规程( 16:13:52)标签:杂谈

本项目针对杭州墙材现状和建筑节能对墙材的要求的严峻形势,以现有页岩砖厂技改实现

升级换代,实现墙材结构调整,提高墙材生产施工技术水平,为建筑节能提供经济实用、性能良好的节能墙体为目标,系统研究页岩多孔砖、空心砖的生产工艺、施工和砌体物理力学性能,页岩多孔砖及空心砖砌筑砂浆、保温砂浆等配套材料,页岩多孔砖墙体构造、施工工艺及性能,为页岩多孔砖、空心砖的生产应用奠定坚实的基础。本项目的实施将实现我市实心砖向空心砖的转变,为我市全面实施建筑节能作好墙材产业准备。对我市传统建材产业的结构调整和建筑业的科技进步有显著的推动和牵引作用。主要的技术性能指标:

1、不同孔形、孔结构和孔洞率对页岩塑性的要求;

2、页岩多孔砖、空心砖物理力学性能、孔洞率、孔形态对性能的影响;

3、页岩多孔砖、空心砖成型与烧成工艺研究;

4、页岩多孔砖、空心砖砌体力学性能;

5、页岩多孔砖、空心砖对砂浆的要求,砌筑工艺;

6、烧结页岩多孔砖、空心砖砌体结构技术规程。在重庆市建委和重庆市建筑节能办公室组织下,在重庆龙湖小区西苑、北苑、香樟林别墅、回龙湾小区、天奇小区等工程进行了大规模的页岩多孔砖、空心砖的工程应用与示范,通过热工实测和内耗分析,各建筑均满足建筑节能标准对外围护结构结构热工要求和建筑物耗冷量指标的规定。在页岩多孔砖砌体力学性能研究和工程应用的基础上,参照现行国家规范和规程,形成了《烧结页岩多孔砖和空心砖砌体技术规程》讨论稿和征求意见稿。页岩多孔砖、空心砖应用获得很大成功,工程示范效应非常显著,页岩多孔砖、空心砖的特点和优势已被本地区业内认识和接受,目前正在进行技改和已完成技改的页岩空心砖生产线近50条。2002年以来,新开发小区纷纷开始选用页岩空心砖,2002年页岩空心砖应用量从2001年的6000万块增加到4亿块,预计未来若干年将保持成倍的增长速率,3年后将成为重庆地区的主体墙体材料,实现重庆市墙材由实心砖向空心砖的结构调整。 烧结页岩多孔砖和空心砖砌体结构技术规程

来自: 发表人: admin 发布文号: 发布时间: 浏览数:830

本项目针对重庆墙材现状和建筑节能对墙材的要求的严峻形势,以现有页岩砖厂技改实现升级换代,实现墙材结构调整,提高墙材生产施工技术水平,为建筑节能提供经济实用、性能良好的节能墙体为目标,系统研究页岩多孔砖、空心砖的生产工艺、施工和砌体物理力学性能,页岩多孔砖及空心砖砌筑砂浆、保温砂浆等配套材料,页岩多孔砖墙体构造、施工工艺及性能,为页岩多孔砖、空心砖的生产应用奠定坚实的基础。本项目的实施将实现我市实心砖向空心砖的转变,为我市全面实施建筑节能作好墙材产业准备。对我市传统建材产业的结构调整和建筑业的科技进步有显著的推动和牵引作用。

单位名称:重庆市建筑科学研究院

通讯地址:重庆市渝中区人和街31号 邮政编码:400015

联 系 人:林文修 联系电话:

添加日期: 14:12:46 浏览次数:0 作者:赵逸川 黎跃沙 赵周民

建材工业是国民经济的重要原材料工业,属典型的资源依赖型工业。我国是目前全球最大的建材生产和消费国,建材工业的年能耗总量位居我国各工业部门的第三位。建材工业一方面大量消耗能源,同时又潜含着巨大的节能空间;在生产过程中既污染着环境,却又是全国消纳固体废弃物总量最多、为保护环境做出了重要贡献的产业。

我国砖瓦工业的产能约1万亿块(折烧结普通砖),实际产量约8500亿块(折烧结普通砖)。如果按每kg成品耗热1600kJ(含干燥及焙烧)计算,全行业年消耗热量约8200万吨标煤(产品孔洞率平均按30%计),考虑到约有三分之一的热量来自煤矸石、粉煤灰等含能工业废渣,每年耗热折标煤仍达5700万吨,约占全国煤耗的1.8%。砖瓦厂电耗贯穿于整个工艺过程,依破碎、陈化、成型、切码运、运转、热工系统设备选型不同,每万块成品电耗在350~650度,每年砖瓦工业耗电约400亿度。由于全国绝大多数地区已将工业废渣作为焙烧的部分或全部燃料,因此,节煤的主要方向将转化为技术节能以及产品的转型节能。随着烧结砖瓦工业技术水平和生产率的提高,国家产业政策的陆续出台,节能执法力度的加强,煤耗会有一个快速的下降,然后进入平台期;而电耗会有一个持续的增长,只有更先进的工艺、更高效的设备、更节能的电气才会有效地降低电耗。本文仅对烧结砖厂在技术节能的措施方面给出一些讨论,希望引起业内的重视。

2. 用能标准和节能规范

我国政府历来都非常重视能源的使用以及节能工作,颁布了一系列的能源政策以及节能的法律法规。涉及到烧结砖瓦工厂的能源使用的法律法规有: 1)、《中华人民共和国节约能源法》2007年10月28日修订; 2)、《中华人民共和国清洁生产促进法》2002年6月29日通过; 3)、《评价企业合理用电技术导则》GB/T; 4)、《评价企业合理用热技术导则》GB/T; 5)、《工业炉窑保温技术通则》GB/T; 6)、《设备及管道保温保冷技术通则》GB/T; 7)、《工业设备及管道绝热工程设计规范》GB; 8)、《设备及管道绝热设计导则》GB/T; 9)、《余热利用设备设计管理规定》YB; 10)、《节电措施经济效益计算与评价》GB/T; 11)、《综合能耗计算通则》GB/T 2589—2008; 12)、《烧结砖瓦工厂设计规范》GB50701—2011; 13)、《烧结砖瓦工厂节能设计规范》GB50528—2009; 14)、《烧结砖瓦单位产品能源消耗限额》GBxxxxx—20xx;

3. 1.工艺系统节能

在建设烧结砖厂伊始,就应该对所用原材料进行较为详细的矿物学成分鉴别,确定其烧结特性以及一系列的工艺特征(如加工处理、成型、干燥等)。对烧成温度特别高的原材料,如含铝量过高的煤矸石或页岩原材料(一般情况下其三氧化二铝含量不超过23%),最好搭配烧结温度较低的黏土或其他原材料来进行调配,降低其烧成温度。对采集的原材料进行适当地混合处理或风化、陈化,增加塑化剂和助熔剂提高其成型性能、改善其干燥和焙烧性能,也是节能的有效措施。

工艺系统节能主要体现在优化工艺过程,即对不同的原料结合产品规格和产量采取合理有效的工艺流程和设备选型。大型现代化砖瓦厂主要由以下系统组成:原料制备(破碎、筛分、均化、陈化)、成型(搅拌挤出机或圆盘筛式喂料机、挤出机)、编运系统(切条机、切坯机、编组台、码坯机或机械手)、窑车运转系统(步进机、牵引机、摆渡车)、热工系统(干燥室、燃气及输配系统、窑炉、卸垛或打包机)、自动化系统(自动配料系统、自动化运转系统、热工监测系统 、中央监控系统)。原料制备及成型系统集中了全线绝大部分大功率设备,电耗占全厂用量的60%左右;热工系统的所有送热、排潮、排烟、冷却风机虽装机容量不大但由于24小时连续运行,大约消耗了全厂用电的30%左右。生产用煤全部为窑炉(含干燥)消耗。因此上述三个系统是全厂节能的基础和关键。

原料制备的电耗集中在破碎工段,主要耗电设备是颚式破碎机、锤式破碎机、粗碎对辊机、高速细碎对辊机。破碎工艺及设备选型是系统能否节电的前提。针对不同原料应有相应的处理设备,如对干、硬物料(煤矸石、页岩):采用颚式破碎机→锤式破碎机→滚动筛→双轴搅拌机;湿软物料(黏土、黏土+粉煤灰):采用粗碎对辊机→细碎对辊机→双轴搅拌机。在满足物料细度要求和所有设备产量匹配的前提下,尽量采用装机容量小、可靠性好、运行稳定的设备。总而言之,只有系统设备达到最佳能效组合,加工过程才能快速有效进行。

成型工段主要耗电设备是搅拌挤出机(或圆盘筛式喂料机)及挤出机。实践证明经搅拌挤出机或圆盘筛式喂料机可以给陈化后的物料补水、强力搅拌、压缩等进行精细处理,可以使挤出机的压力、真空度得到快速提升,进而保证成型的质量、产量。切条机、切坯机虽然其功率合计在2.2~20千瓦不等,但是采用精准切割机可以将挤出泥条的利用率提高10%以上,也可以说成型系统节电至少10%。成型工段也是砖厂故障率最高的工段,原料及产品变更导致机口调整或更换,机械或电气故障、停电甚至雨雪天气都会影响到有效开机。能否连续化生产、降低停机时间是成型工段节电的标志。 对于低塑性的物料或在冬春季节,给搅拌挤出机和挤出机通入蒸汽对物料进行处理,可以将其潜在的塑性和结合能力充分发挥出来,也有利于缩短干燥周期,提高干燥质量、降低干燥能耗。

从电气专业的角度来讲,烧结砖瓦行业三相异步电动机为最主要的电耗来源。目前全世界的50%以上电能来被三相异步电动机消耗,中国则占到60%~70%,砖瓦行业的使用比例则更高。砖瓦企业想要在减少电耗的方向上下功夫,三相异步电动机的合理应用是核心问题之一 1)电机的合理选型

对于功率较大,占据全厂总耗电较大比例的电机,应注意合理的功率选型。如果功率选型过大,电机长期处于轻载, 则消耗的无功功率比例相应增大, 用电效率相应降低,造成电能的极大浪费,同时也可能面临供电部门低功率因数的额外收费。同样对于三相异步电机的选择,尤其是对于功率较大的电机,应避免为降低投资,购入低能效产品,而应更多考虑质量较好、铜耗较低、效率较高、性价比较高的一些国产优质品牌,长期使用也会节省可观的用电费用。

此外,我们还应当从工艺角度和工厂运行管理制度下手,尽量避免大功率电机频繁的负荷剧烈升降和长时间的空载运行。因为每当电机满足瞬时的高转矩要求后,都会较长时间处于相对轻负载运行状态,造成一段时间内电机绕组磁饱和、电机效率较低。另外,大功率电机的不必要的长时间空载运行,也会造成电能的浪费。

结合我国烧结砖瓦行业现状,目前应使用其它行业已较为广泛应用、技术成熟、性价比高的节电设备,同时注意将其合适的设备匹配。例如,由于气候、工作制度、市场等因素的影响,生产线产量会有较大起伏,热工系统的风机电机可能既需要长时间接近额定功率的高负载运行,又需要长时间处于较低负载运行,这种情况最好采用变频器这类变频调速设备。

3. 1.4. 减少不必要的“过度加工”

根据原料的硬度、含水率及物料平衡要求配臵破碎筛分设备即破碎机达到设计的颗粒级配,筛分设备的孔径及筛分效率满足设计产量,使筛余量始终保持在较低水平,真正做到高效破碎,及时筛分,避免了筛上料积蓄。在杂质过多时可将闭环破碎改为开环破碎——废弃筛上料,还可以避免低效破碎产生的配比失衡。

个别选用摆式磨粉机的生产线可能由于物料含水率过高,加之配套风机的风压或风量偏小,分析级安装过高致使细粉在破碎腔内滞留甚至固结,磨机产量急剧下降。

砖瓦原料的粗、中、细颗粒并不是细料越多越好。物料中细粉过多,会导致坯体变形大,干燥收缩大、缺陷多,烧后制品尺寸公差超标,强度低。所以根据原料、产品、效率及能耗应该建立“经济破碎粒度”的概念。

3. 1.5. 提高单条生产线产能

我国的砖厂单线规模普遍偏小,工艺水平差异较大,但是工艺相近的砖厂随着产量增加单位能耗有所下降。以同等装备水平的煤矸石烧结砖厂为例:年产3000万块以下电耗约650kWh /万块,热耗约1700kJ/kg成品;年产万块电耗约600kWh /万块,热耗约1600 kJ /kg成品;年产万块电耗约550kWh /万块,热耗约1400kJ/kg成品。

3. 2.新型设备节能

近年来砖瓦行业鲜有新型节能工艺及装备的出现,原因有以下几点; 1)工艺技术标准不健全,产品标准单一;只有专用机械设备而无标准设备,即便是同一规格设备每个生产单位的安装图也不统一,有些厂家甚至不提供详细的安装图;图纸的不统一导致了工程图的延迟,而且一旦更换其他厂家的设备就得重新改造甚至重新施工设备基础;有些设备厂家不在机械结构、关键材料和加工工艺上下功夫,只是单纯地加大功率以适应所有的原料和产品。不考虑砖厂因动力加大而带来的电力成本是砖瓦机械普遍存在的问题; 2)与其它非烧结墙体材料工厂比较,砖瓦厂工艺复杂、投资大、产品售价总体偏低,大部分投资者仍缺乏稳定而较高的收益,从而抑制了其采用先进工艺、配备高端设备上大规模生产线的积极性;

3)在欧美,烧结黏土制品从来都是跨区域销售且是价值不菲的“奢侈品”,从业者也有很高的地位;而在我国,砖瓦一直是地位“低下”的地方建材,往往被人蔑视,甚至成为低端产业的代名词。在欧洲,烧结砖瓦行业有自己的一系列完整的原材料评价(矿物.成分、工艺特征、干燥特性、烧结性能等)体系、有着完备的工艺评价体系、有着成熟的热工系统考核方法,更有着先进的机械设备制造商,而且制造水平堪与航空、电子工业相媲美。甚至可以说:每一个砖厂就像是一个研究所,每一个机械厂就是一个设计院。在我国,砖瓦工业最早进入市场,由于缺乏政策的强力扶持与严管,不管是机械还是砖瓦产品,鱼龙混杂,良莠不齐。由于缺乏原创性的研究和集成创新,没有借鉴其他行业的先进技术,大部分设备为相互克隆的产品,水平低下的机械设备与窑炉无情地吞噬着昂贵的电力和宝贵的煤炭资源。

当然,近十年来国家墙改力度的加大,国产引进型设备的广泛采用,房地产业的高速发展刺激和促进了墙体材料工业的技术进步和砖价的上涨,投资烧结砖瓦有了一定的利润空间;一些新技术和新装备在一些大型项目(多在地位不同的煤炭、电力行业)中得到应用并取得了一些成效。对于提高劳动生产率、扩大产能、生产高端产品、促进行业的技术进步具有示范作用。如在原料及其制备工段采用自动化配料系统;原料破粉碎工段采用大型粉磨系统(烘干立式磨粉机、烘干球磨机、摆式磨粉机);陈化库采用桥式多斗挖土机;采用码坯机械手、自动码坯机、单层干燥自动化装卸载系统;采用成品卸垛机、打包机等。但是采用上述设备的生产线工艺比较复杂,工程造价提高,而且以消耗电能为代价,还增加了单位产品的成本。但是这些设备代表了砖瓦行业最新、最先进的技术,代表了砖瓦工业的发展方向。目前在节电方面比较有成效的设备有:搅拌挤出机、圆盘筛式喂料机、多泥条挤出机、中压轴流风机(均带有变频调速装臵)。

3.3.热工设施节能 3.3.1. 小断面干燥室——轮窑系统

确定每一种产品的最适宜的码车图,以利干燥室内热交换及坯体脱水; 进车端设臵简易干燥门并在进车后及时关闭,防止吸入冷空气;

每个送热风支道都安装调节门以便将总风量分配均匀;根据原料和产品调整好支道内各段混凝土盖板的间隙;

校验送、排风机选型参数是否得当,必要时更换机型或调整电机;送、排风机加装变频器随时调整风量以适应生产过程和气候的变化。

对于仅采用热烟气作为干燥热源的、需要有热风炉补充干燥室不足热量的轮窑,在其直窑段每个窑室需要增加抽取余热风闸,独立设臵热风道,抽出余热后再与烟热混合送往干燥室;

烧窑工要熟悉带有余热系统的轮窑结构,熟练掌握热风闸的操作。 3.3.2. “一次码烧”干燥室——隧道窑系统

1)干燥室 a、存在的问题

冬、春季倒坯、产量低,配套的系统操控性差、反应不灵敏是普遍存在的问题,由此加剧了窑炉热耗和配套设备电耗。主要是由于干燥室进车制度混乱、码坯方式不合理、排潮不畅、送风不到位、干燥室过短等诸多问题导致。

码好的坯车必须按干燥室工作制度进车,成型工段下班前在存车道上必须存储够干燥室一个班或10h进车需要的坯车;存坯量不够的干燥室应在夜间降低送风温度或按干燥室进车端湿度控制排潮风机的启停,如在湿度大于95%时开启风机,湿度小于75%时关停风机,最好使用变频器来控制风机。

控制码窑密度: 烧结普通砖220~240块/ m 3;多孔砖260~290块(折烧结普通砖)/ m3;空心砖280~320块(折烧结普通砖)/ m 3。而且内燃砖要边密中稀,坯垛顶隙小于80mm;侧隙小于80mm。

以顶送风为主,侧循环为辅。占送风总量的70%左右的热风以不低于600Pa的压力从干燥室顶部的条形孔送入窑车上坯垛之间的空隙;侧循环风主要起扰动和搅拌作用,可有效降低干燥室断面温差和干燥残余含水率,为入窑后快速升温奠定基础;

在主排潮风机之后设臵采用离心风机的辅助排潮系统抽取干燥室车面的湿气可有效的防止冬春季进车端倒坯; 延长干燥室或加一条干燥室:

干燥室的基本任务就是生产出满足进入隧道窑所要求的最低残余含水率的干坯,入窑后能够快速升温。这样不仅能够加快焙烧的进度(干燥程度不够的砖坯在进入隧道窑后还得继续干燥脱水,在一定程度上也等于缩短了隧道窑的长度),而且节约燃煤。过短的干燥室不仅降低了干燥周期,也限制了该系统的合理布臵,如送排风口的布臵;将残余水分过高的坯体入窑,窑的预热带就会变成干燥带,窑的有效长度就会缩短,产量萎缩,自然也不会给干燥室提供足够的热源。因此,要对原干燥室的干燥周期重新校核,如果达不到要求,在场地允许的情况可下适当延长干燥室或加一条干燥室。但是要增加干燥室就必须对热风源进行重新分配。总而言之,干燥能解决的就不要推到窑炉;前一工序能解决的就不要推到后续工段。

窑型:拱形窑顶部圆弧部位及侧面空隙过大,空气流速过快,断面温差大; 窑长:过短。系统设臵不完备,温度曲线过陡,产品出窑温度高; 码坯:顶隙及侧隙过大,中部间隙过小甚至整个断面码成一垛,造成坯垛断面上有效通风面积过低;码坯密度过高,中部通风差,违反了“穿流”焙烧的基本原则。

材料:窑顶及窑墙选用材质导热系数过大且厚度太薄,导致窑体散热大; 排烟系统:排烟段偏短、排烟口不能卸灰导致排烟不畅、排烟口过高导致排烟温度过高弱化了排烟过程对干坯的预热功能;

车底压力平衡:未设臵该个系统,使车下得不到冷却,约15%的热量得不到回收,窑内轨道变形和车轴润滑失效带来的卡车、脱轨、倒垛甚至窑体坍塌时有发生;

窑顶空腔换热:窑顶换热使隧道窑顶处于微负压状态,可以有效减缓含硫气体对窑顶结构甚至钢结构厂房的侵蚀;

冷却带余热抽取位臵及方法:该部位热量占隧道窑全部热量的70%以上,是最优质的热源。能否利用好这一热源决定一条生产线的成败。现有隧道窑的抽余热口大多设臵在窑外墙两侧,而且间隔过大、数量偏少。一方面热量得不到快速有效的抽取,致使坯垛中部得不到有效冷却,另一方面坯垛与侧墙之间流速过快;出现中部砖“过烧”,边部砖不熟的现象;产品出窑温度高是其显著特征;

风闸:所用闸阀(锅)直径不够且年久失修,操作不灵活甚至失效; 烟道:截面积不够、塌陷严重、阻力大;积灰甚至阻塞;没有或者无法安装换热器;

投煤孔: 起止点不当,投煤范围与温度曲线不一致;定位有误,使外投煤落在坯垛之间或砂封槽,不但不能有效的燃烧还给窑车运行带来隐患;

窑车:窑车与窑体之间没有形成曲封,耐火及保温材料用量极少甚至不用,保温差,破损严重导致车下漏风;

窑门:没有设臵截止门,出端窑门未安装冷却风机甚至没有出端门,使焙烧过程应处的封闭体系变成了敞开体系,生产过程易受环境影响而不好掌控;缺乏强制冷却延缓了焙烧过程,加大了推车间隔; b、解决问题的措施 热工系统技术改造

由于隧道窑焙烧系统是节约热能消耗的主体,与其相关配套设备投资较大,许多不合理的问题普遍存在,而且由来已久,要完全解决这些问题需要有个过程。因此,各砖厂应从自己的实际出发,有针对性地抓主要矛盾,阶段性地完成节能技术改造。对于那些系统及结构落后、年久失修,能耗居高不下的窑炉要坚决拆除重建。技术改造要从完善系统、调整设备,加强窑体与窑车保温及管理做起,稳步提高进车速度,产量和质量逐渐上升,能耗会明显下降。具体可从以下方面实施:

窑型:采用吊平顶结构隧道窑,不仅气流分布均匀,而且便于机械化码坯、卸窑车。为了延长隧道窑的使用寿命,最好采用耐火砖吊顶;

码坯:码好坯垛的窑车是隧道窑中的最小单元,其尺寸取决于产品规格和码坯方式。要达到合适的“断面空隙率”和“码窑密度”就不要码的过高、过密。最好码成1×1 ×1.5~1.6m(长x宽x高) 的垛身,在入窑前最好通过检查门,既保证了较小的顶隙和侧隙,又不至于与窑墙碰檫;

材料:窑顶及窑墙最好采用复合结构,最大限度地减少窑体散热; 排烟系统:排烟过程的一个重要附加功能就是消除干燥过程的不均匀性,保证坯体得到充分预热。因此,排烟段不少于30m,低温及高温烟气排出口分别不低于6对和4对,低排烟温度控制在100~120℃;

车底压力平衡:必须设臵该系统,使车底得到冷却、平衡车下与窑内压力,并回收散入车下的热量,也有利于发生事故时救援人员的进入;

冷却带余热抽取:在窑的冷却带后部温度曲线对应450~200℃范围内窑顶设臵9~12排不锈钢余热抽取孔,每排3个抽出口,孔径150~200mm,可有效抽取余热,为干燥室提供充足的热源;

烟道与风闸:采用钢制管道替换原有的砖砌风道,铸钢蝶阀代替铸铁闸锅,蝶阀下部连接卸灰口,可定时清理积灰; 投煤孔: 将投煤孔的设臵范围延长到20m以上,并使投煤孔直径的三分之一在投影上与窑内坯垛边缘重叠,使投煤不断受坯垛的碰檫以减缓其下降速度、提高燃烧效率;投煤孔的设臵应与窑顶结构相吻合;

窑车:砌筑必要的耐火及保温材料,角砖与框砖的荷重软化点及热震稳定性最好达到3级高铝砖的指标;框砖与窑墙探头砖之间必须设臵曲封;窑车与窑车之间耐火材料及钢结构也必须形成很好的封闭结合;

窑门:进车端门后一个车位设臵截止门,以减少外部干扰;出端门安装冷却风机,为焙烧带供氧的同时强制冷却制品,有效缩短窑长; 必须配臵自动化运转系统及热工检测系统

烧结砖瓦行业中,自动化设备和系统是为工艺和热工系统服务的。除去替代劳动力、监视系统安全稳定运行等作用,改善生产线能耗水平也是自动化系统的主要作用和发展方向之一。

自动化与过程与控制在烧结砖瓦厂的生产及管理已得到广泛应用。工控机、变频调速器、可编程控制器在切、码、运系统、热工运转系统、热工检测系统及生产管理系统的应用大大降低了设备电耗、工艺能耗,稳定了产品质量;使生产过程有了可靠的检测和控制手段,提高了劳动生产率。

干燥焙烧是烧结砖生产线中关键的环节,因而干燥室和隧道窑工作状况的稳定、窑车窑门运转设备及其运行管理将直接影响产品的质量和产量。应用工控机、变频调速器对干燥室隧道窑的温度、压力制度等进行巡检和控制,采用PLC可编程控制器对窑车运转系统进行程序化控制,稳定生产、提高产量、保证质量、节能降耗。目前国内外砖厂都把热工测控及热工运转系统都放在比较重要的位臵。 热工运转系统

为保证窑车窑门运转系统生产安全、可靠、准确、先进,窑车窑门运转工序采用可编程控制器进行程序自动化控制,兼顾系统的经济性。该系统对窑车、步进机(节拍器)、窑门、摆渡车、顶车机、出口拉引机,回车牵引机等运转设备进行集中控制并根据干燥室及隧道窑的干燥焙烧制度制定运转程序,可编程控制器按照程序控制各运转设备的运行,进一步提高了设备运行的可靠性,避免了因人为因素造成的误操作。对产品的质量而言,严格的进车制度保证了干燥室及隧道窑内温度、压力的稳定、平衡,对产品的质量起到了稳定和保障作用。

烧结砖生产线的干燥室及隧道窑温度、压力检测调节控制系统对半成品、成品的干燥及焙烧过程进行监测、预测和自动控制,是生产线上不可缺少的手段。该系统采用工控机作为上位机,与可编程控制器、传感器、执行器组成的检测系统,对干燥室及隧道窑温度、压力进行实时监控。工控机对整个干燥焙烧过程进行管理,监控各测点工作状况和发展趋势;可在线修改调节参数,或对控制逻辑进行组态修改;保存和处理温度、压力等的异常波动;自动诊断传感器故障;对紧急状况进行声光报警;可打印保存各种相关参数和统计图表。

该系统对干燥室隧道窑温度、压力的检测、调节,是通过稳定零压点和调节干燥室隧道窑各段排风量来实现的,其执行机构有变频调速器、电动或气动执行机构等。

该系统采用安装方便,抗干扰能力强。同时采用集散方式,可减少热电偶补偿导线、安装辅材等用量,维护及检修也相对方便。且上位机可与系统外进行通讯。

通过对干燥室隧道窑的温度、压力的检测、调节及窑车窑门运转设备的自动控制大大降低了劳动强度,优化了生产环境,减少能源消耗和人力资源的浪费,提高了企业管理水平。

热工监测系统需要进一步完善

虽然利用温度传感器(热电偶、热电阻等)对隧道窑进行全方位的温度值监测是十分必要的,热工监测系统从硬件和基本软件还比较完善;但是利用温、湿度传感器对干燥难度较大的生产线的干燥室进行监测和干预,也有很大的必要性,目前做得还远远不够。作为以PLC为核心的程控系统,从硬件上来说热工监测系统组成并不复杂,衡量一套热工监测系统的标准主要还是软件的功能。热工监测系统的软件不但要有最基本的监测安全运行的数据、图表和画面显示,更应在热工系统节能上下功夫。热工监测系统应该服务于热工节能的宗旨,而不能擅自制定热工参数。要建立完善的热工节能软件,应该在热工专业针对特定热工系统给定的边界条件和图表下,在软件组态中,不但实现实际热工监测数据同最节能的理想焙烧曲线的数据比对和直观显示,也应有实际焙烧曲线偏离较大时的处理提示或反馈控制。

热工系统自动化的发展趋势

由于行业现状和国内使用内燃料的特殊性,自动化系统在烧结砖瓦行业并没有实现真正意义上的闭环控制自动化系统。但是,作为大量消耗燃料的行业,烧结砖瓦行业要真正实现节能,就必须由自动化系统精确、最优地控制燃料送料和燃烧过程,虽然目前这类技术从技术应用和市场环境来讲尚不成熟,但却是烧结砖瓦行业的未来的一个发展趋势。

想要控制隧道窑燃烧系统燃烧过程的精确性,目前来看有两个主要思路。一是在具备可接受电反馈信号驱动,且可量化控制的燃料送料系统的前提下(如可量化控制的燃气、燃油喷嘴或煤粉送粉系统),建立温度传感→数据对比→控制燃烧系统调整→温度传感这样真正的闭环自动化控制系统;二是也可通过一段时间内的温度传感-数据对比分析-计算出车时间,做到精确控制出车时间的开环控制。不论哪种控制,都可在一定程度上做到燃料或燃烧系统的优化利用,从而达到节能的目的。

生产线中对技术管理、电气控制、干燥室及隧道窑操作、码坯机及卸垛机、机修、成型等重要岗位对员工的素质及技术水平有较高的要求,应在施工中、投产前进行岗位培训,帮助职工尽快提高操作水平和故障排除能力。对上述岗位的技术工人应重点培训、严格考核,条件具备的单位可依托有关机构技术认证,使其具有解决较大技术难题和突发事件的能力。对其他岗位的操作人员,在上岗前也要短期技术培训,每个人都应对生产线有所了解,掌握优质高产技能,掌握安全生产知识,了解本岗位工作责任与全局的关系,确保生产线正常运转。管理人员最好经历生产线的建设与调试,熟悉生产工艺,掌握主要质量控制点。要严格管理每一个工艺环节,使生产线无论在技术上、产品质量与产量上、还是在生产劳动组织上达到一个较高的水平。主要负责人应进行较高层次的技术和工商管理配训,在提高企业管理水平的同时,建立和提升企业文化,充分发挥人的主观能动性和设备潜能,获得最佳的经济效益。 3.4. 2. 建立规章制度和质量保证体系

为了使生产线能够正常运转,顺利生产出符合标准的优质产品,要求建立一套严格的规章制度,强化安全生产、环境保护、节能降耗责任制。

5. 规范化热工系统示例

5.1. 干燥室——轮窑系统示例(年产3000万页岩烧结砖)

本项目确定的生产规模为3,000万块/年(折烧结普通砖砖)。干燥和焙烧两工序的累计废品率按10%考虑,则全年实际成型量为3,300万块。 5.1.2. 干燥室

量: 850辆(其中干燥室内容车660辆) 1) 系统及结构 选用小断面隧道干燥室。干燥室采用砖混结构,侧墙为红砖墙,顶部由预制混凝土顶板,炉渣保温层组成,在其上铺冷底子油一道,二毡三油等作为防水层。

隧道干燥室主要热源为轮窑余热,热介质通过烟道由送热风机从底部供给每条隧道。隧道干燥室设有送风系统、排潮系统及检测系统。干燥车采用底层为竖码的码坯方式,以提高干燥效率和半成品的质量。

55×2辆(双轨道) 内宽:

2.2m(单通道) 有效高度:

286块/m3(折烧结普通砖砖) 送风温度:

3,000万块(折普通砖) 每组通道数:

该生产线采用新型轮窑焙烧。该轮窑具有完善的燃烧系统、排烟系统、余热系统,通过对这些系统的调整,使窑内的焙烧制度更趋合理,生产出合格的页岩烧结砖。 轮窑采用毛石基础、墙体采用烧结普通砖砌筑,火眼及抽余热口采用耐热混凝土浇注。

轮窑热源主要为内燃掺料所含热量,不足部分由外投煤补充。 2)轮窑的主要技术参数

5~6万块 工艺参数:

240块(普通砖)/m3 内燃程度

直接余热+烟热 排烟方式

机械排烟(全部送往干燥室)

5.2.“一次码烧”干燥室——隧道窑系统示例(年产3000万页岩/煤矸石烧结砖)

5.2.1.干燥与焙烧热工设备的确定

根据原料及工艺,干燥和焙烧两个工序所需的热工设备分别采用中断面干燥室和中断面平吊顶隧道窑。此种工艺的特征为:工艺流程短、投资合理、生产过程灵活,充分利用了隧道窑余热,发挥了隧道窑的能力。有利于缩短工艺流程、减少消耗。此外,隧道干燥室和隧道窑温差小、热效高、产量大,技术先进,窑体和附属设备及关联构筑物投资少,有利于降低生产成本,提高产品质量,可在短期内达产达标,提高经济效益。

5.2.2. 干燥与焙烧技术参数

本项目确定的生产规模为烧结普通砖3,000万块/年。干燥和焙烧两工序的累计废品率按10%考虑,则全年实际生产量3,300万块。

2)、码窑形式及窑车的规格尺寸

砖坯采用人工码坯。窑车纵向码2垛、横向3垛,多孔砖90mm高度码14层(烧结普通砖115mm高度码12层)。

×840mm(含衬砖高度) 窑车数量:110辆(其中干燥室和隧道窑容车30+46 =76辆) 3) 干燥室

本工艺选用平顶干燥室。干燥室采用砖混结构,钢筋混凝土顶板,曲封以上墙厚490mm。

干燥室热源为隧道窑余热,热介质通过外部管路系统供给干燥室。干燥室设有主送风机侧进风系统、主排潮及辅助排潮系统、检测系统。除检测系统外,其余系统均由金属管路及相应的风机组成。为防止干燥介质直接冲击坯体,产生不良影响,把所有的进风口、排风口设在坯垛之间的预留空间上。由于干燥室的所有风管都设臵在干燥室外部,将给调试工作带来很大方便,也为检修工作创造了良好的条件。 b、主要技术参数

30辆(有效容车29辆) 内宽:

1.40m(90mm多孔砖码高14层、总收缩4%,顶隙90mm) 每车装载量: 2,352块(多孔砖4压7码法,即孔洞垂直向上,码高14层,折烧结普通砖3,994块)

289块/m3(折烧结普通砖) 送风温度:

≥80% 干燥合格率:

3,000万块 热耗指标:

隧道窑 a、隧道窑系统

隧道窑设有完善的排烟系统、冷却系统、余热系统、压力平衡系统、运转系统和热工监测系统,通过对这些系统的调整,窑内的焙烧曲线更趋合理,生产秩序更加协调。

隧道窑在进车端设臵了预备室,在预备室与窑预热带连接处设臵了截止门,还在两头设臵了端门,这样可以有效地避免冷空气进入窑内,保证窑的运行及焙烧不受外界影响。 b、隧道窑结构

窑基础为条形基础。由下向上依次为灰土+毛石+钢筋混凝土梁(轨道梁)/板(窑墙下)

隧道窑预热带与冷却带200℃以下墙体采用红砖砌筑;其余部分为复合墙体,即焙烧带、保温带窑墙最内层用黏土质耐火砖砌筑,保温层采用黏土质隔热砖砌筑及耐火纤维毡(温度曲线在600℃以上对应部位)或岩棉毡填充,外墙用红砖砌筑。

在窑两端低温带各留有一车位采用现浇混凝土顶板;其他部位,耐火砖通过耐火吊挂砖在顶部H型钢梁之下,钢梁的重量由两侧的耐火砖墙承载。耐火砖上铺设耐火纤维毡及岩棉毡、板,组成复合保温层。在材料层间及保温层最上部涂刷高温黏结剂以保证材料的绝热性和结构的耐久性。

投煤孔具有补充热量、调试、观测、负压下补充氧气或冷却、正压下释放热量等功效,在内燃烧砖隧道窑广泛采用,不能减少或随意取消。

直接抽取余热系统,臵于隧道窑顶部,温度曲线450~200℃范围内,抽取的余热占干燥所需的80%。该热源干净、基本无污染。经与换热器热交换除可供职工洗澡及陈化库冬季采暖外,其余与高温烟气混合送入干燥室。快速有效地抽取制品直接冷却热,也可缩短窑的长度,节省建窑投资。

窑车的裙板插入砂封槽,将高温与外界隔离,以防止负压下冷风吸入窑内降低窑温或正压下高温气体窜入窑下损毁窑车钢结构以及引发轨道变形。

c、隧道窑主要技术参数

内高: 1.37m(多孔砖码高14层、烧成收缩2%,顶隙85mm) 烧成温度:

3,000万块 /年 隧道窑内规格:

6.1. 技术节能是砖瓦工业长期面临的重大课题

烧结砖瓦以及建筑节能是一个庞大的系统工程,涵盖了原料节能、生产节能和产品节能。在原料节能方面,各地砖厂积极地落实了国家有关节能法规,基本上都采用了煤矸石、粉煤灰、石炭等含能工业废渣作为内燃,已取得了很大的成效。因此,除个别有条件的地区外,利用含能的工业废渣节能将不作为烧结砖瓦厂技改的重点。建筑节能由建设系统牵头,与规划、设计、施工、配套产品密切相关,墙体材料作为基础和重要环节责无旁贷。

6.2. 烧结砖瓦厂的技术改造必须有前瞻性 在烧结砖瓦厂的技术改造前应对原有生产线的生产现状尤其是能源结构、能耗水平、节能方向、管理水平有深入的了解,要与有关企业进行了认真地交流,拿出切实可行的节能技改方案。由于国家大气环境标准及烧结砖瓦厂的工艺标准、产品标准、能耗标准及会不断地提升,烧结砖瓦的能源政策也会更加严苛,有关部门的执行及执法力度也会加大,因此,新的设计或重大技改中与生产工艺、装备功率、热工系统相关的边界条件必须明晰,能耗指标必须严格计算并在生产中得到考核、验证。

6.3. 现代的烧结砖瓦厂必须规范设计

大型烧结砖瓦厂不仅投资大而且有比较复杂的工艺过程,涉及到工艺、热工(干燥及窑炉)、电力与拖动、自动化、机械、总图运输、建筑与结构、给水与排水、采暖与通风、环境保护、技术经济等专业。而且只有各专业规范、有序地做出完善的设计图纸和设计文件,造价工程师才能编制出工程预算并作标的,工程才能进入正常的招标程序,造价和质量从源头上也能得到很好的控制。由于烧结砖瓦厂工艺平面布臵与原料、产品及产量、投资息息相关,往往受到场地限制。因此,设计方案既决定了工厂能耗,更是成为砖厂成败的关键。在确定设计方案进入施工图设计之前,项目负责与工艺专业负责应将能耗指标分解后下达给各相关专业,通过设计过程的互动与调整,在满足节能规范并通过节能审查后才能正式打印施工图。

6.4. 必须采用可靠成熟的技术和设备

烧结砖瓦厂基本上是各种机械设备、电气设备和热工设备的运用,每种设备都有其适用范围和市场定位,必须是经过市场考验和认证的成熟技术才能进入工程领域。近年来砖瓦装备出现了一些新技术、新产品,对行业的技术进步起了积极的推动和引导作用。但是一些不成熟的装备也充斥着市场,如“山寨”隧道窑、全纤维吊顶隧道窑、一次码烧轮窑、脱硫除尘系统(假)、辊道窑烧砖、微波干燥、无所不能的挤出机等,有些甚至违反了机械原理、硅酸盐物理化学、设计及施工规范中最基本的要求,夸大其词,无中生有,不但扰乱了正常的视听和技术交流,败坏了企业的声誉,而且制造了一大批能耗高、污染大、效益差的短命企业和不良资产,引发了一系列的经济纠纷甚至诉讼,在行业内外造成了极其恶劣的影响,但是这些事件的始作俑者仍然以所谓的高新技术为噱头牟利。因此,清理伪劣技术产品,净化砖瓦技术市场,彰显公平正义也是烧结砖瓦行业一项长期而艰巨的任务。

6.5. 采用先进装备促进烧结砖瓦工业现代化

具有七千年历史的烧结砖瓦作为少数有文化印记的器物伴随了人类的整个发展过程。实践证明人类的发展永远离不开烧结砖瓦,而砖瓦工业的现代化更需要我们的不懈努力。虽然改革开放以来我国砖瓦工业取得了巨大的进步,其产量、质量、价格也有了很大的提升,在消费者心中是物美价廉的墙体材料的代表。但是,我们的产品还比较单一,劳动生产率还比较低,职工的工作劳动强度比较大,劳动环境比较差,物耗和能耗比较高,经济效益比较低,仍是一个低水平的工业门类。能否用10~20年采用由完全拥有知识产权的国产高端设备和先进工艺生产出具有国际水平的装饰砖瓦、陶板、保温隔热砌块?能否用国产的热工设备将热耗降至1300kJ/kg制品以下?能否用国产的自动化设备将劳动生产率提升到100万块/人.年以上?这既是摆在中国砖瓦人面前的“三座大山”,又是一项宏伟目标,而这一切的改变依赖于我们整个行业从业者素质和管理水平的提高,有赖于工艺与装备水平的日臻完善,我们还有漫长的路要走。

鸣谢:本文采用了湛轩业教授级高级工程师,许淑玲高级工程师的意见和建议,在表示感谢!

页岩机砖厂安全生产管理制度

为了保证我厂正常生产,做到安全生产,改善劳动条件,保护劳动者在生产过程中的安全和健康,防止各类事故的发生,确保安全生产,根据国家有关安全生产和劳动保护的法令、法规等有关规定,结合厂的实际情况制定本制度。

1、认真贯彻执行《中华人民共和国安全生产法》、《四川省安全生产条例》及国家有关安全生产法律、法规、标准、规定,履行岗位人员的岗位职责。

2、全厂职工必须牢固树立“安全第一,预防为主”的思想。严格遵守厂的安全生产管理制度和安全技术操作规程,严禁违章指挥、违章作业、违反劳动纪律。

3、采料场、重要岗位人员、新职工和调换工种的人员必须进行“三级”安全教育,未经“三级”安全教育培训不准上岗参加生产操作。

4、严禁酒后上班,职工进入生产作业岗位不准串岗、换岗、私自交换工种、顶替代岗。

5、电工、焊工、爆破员、机动车辆驾驶员必须经有关部门培训考试合格,取得特种作业操作证和驾驶证方可从事特种作业操作及驾驶车辆,做到持证上岗。

6、严禁上班时间穿拖鞋、高跟鞋、风衣、大衣、裙子、留长发和围围巾,装出窑、粉碎和制坯人员必须严格遵守劳动保护法规,正确使用穿戴劳动防护用品,防止职业危害。

7、严禁上班时间会客,职工家属、子女和非生产人员不准进入露天页岩采场、重点要害部位和生产作业场所,严禁带小孩上班,更不准带小孩到车间及作业场所玩耍。

8、严禁在工作时间打闹、嬉戏、开玩笑、看书报,严禁在生产过程中干与本职工作无关的事。

9、严禁私拉乱接电线,私拆安装电器设备设施,电工、焊工必须按规定停电停机检修电器和机械设备,严禁违章作业。

10、爆破人员必须严格遵守爆破安全技术操作规程,认真管好领用爆炸物品,爆破页岩时形成坡度,从上至下台阶式开采,戴好安全帽、系好安全带(绳索)做到安全作业。

}

导读 隧道窑是陶瓷生产中使用最普遍的窑型,其基本特征是窑体外形像一条隧道,其特点是连续性生产,产量高。一般隧道窑的工作系统包括排烟系统、冷却系统、助燃系统、气幕隔离系统和搅拌系统等。

中国粉体网讯 隧道窑是陶瓷生产中使用最普遍的窑型,其基本特征是窑体外形像一条隧道,其特点是连续性生产,产量高。一般隧道窑的工作系统包括排烟系统、冷却系统、助燃系统、气幕隔离系统和搅拌系统等。隧道窑包括四个部分:窑体、窑内输送设备、燃烧设备和通风设备。

1、窑墙,通常由三层组成,最里层是与高温接触的工作层,常用耐火材料砌筑。中间是保温层,由各种轻质保温材料构成。最外层是维护层,用建筑砖砌筑,用以保护轻质保温材料不损坏。

2、窑顶,是隧道窑窑体的重要组成部分,它对于窑的寿命有决定性影响。窑顶支撑在窑墙上,窑顶材料必须能长期承受高温的作用,且质量小、保温性能好,经久耐用。隧道窑的窑顶结构通常有三种形式拱顶、吊平顶和吊拱顶。

3、排烟系统结构,在烧成带产生的燃烧废气,经过预热带窑墙上的排烟口排出窑外,排烟口设在两侧窑墙上靠近窑车面处。

4、抽余热系统结构,在隧道窑冷却带,烧好的制品与窑尾进入的冷空气相遇进行热交换,被加热的空气一部分进入烧成带作为助燃气体,另一部分抽出进行余热利用,这是隧道窑余热利用的主要途径。

5、冷却送风方式及送风口设置,集中送风口可设在窑顶或窑尾的窑门上。

6、窑车及窑的密封结构,窑车是隧道窑的重要组成部分,它构成隧道窑的窑底。窑车和窑墙之间的接缝,是窑内和窑外互相漏气的主要通道。

隧道窑属于泥流操作的热工设备,沿窑长度方向分为预热带、烧成带、冷却带。制品与气流以相反方向运动,在三带中依次完成制品的预热、烧成、冷却的过程。

隧道窑两端设有窑门,每隔一定的时间,将窑车推入一辆,同时,已经烧成成品的窑车被推出一辆。坯体进入预热带后,首先与来自烧成带的燃烧产物(烟气)接触而且被加热,而后进入烧成带,燃料燃烧放出的热量及生成的燃烧产物加热坯体,使之达到一定的温度而烧成,并经过一定时间的保温,生成稳定的制品。燃烧产物自预热带的排烟口、烟道,经风机或烟囱排出窑外。烧成的制品进入冷却带,将热量传递给入窑的冷空气制品本身冷却后出窑。被加热的空气一部分抽进去进行余热利用。

简单来说,隧道窑的烧成过程就是燃料在窑内燃烧、坯体与气体进行热交换、湿交换的过程。通过燃料燃烧产生的热量,将窑内温度升高到坯体烧成所需温度,在烧成温度时,坯体内各组分发生一系列物理、化学变化,经过这一系列变化,坯体由生坯焙烧为具有一定强度和耐久性,符合建筑要求的成品。

柴窑:以柴为燃料,各种龙窑、葫芦窑等形式窑炉均属柴窑范畴。因其燃烧需耗用木材,不利于资源的保护,对环境污染大。是最早的窑炉。

煤窑:是以煤为燃料的工业用窑,因污染大而弃用,或改良用煤气或重油、轻柴油来作为燃料。

电窑:以电为能源,多半以电炉丝、硅碳棒或二硅化钼作为发热组件,依靠电能辐射和导热原理进行氧化气氛烧制。操作简单快捷,安全性能好,比较环保。

气窑:以液化气、煤气或天然气为燃料,火力强,污染小,这种窑炉在今天广泛使用。

近年来,由于能源紧张,为了进一步提高隧道窑窑炉的热效率,达到节能降耗的目的,回收烟气余热是一种非常好的节能途径。

烟气余热回收途径有两种方法,一种是预热工件;另一种是预热空气进行助燃。烟气预热工件需占用较大的体积进行热交换,往往受到作业场地的限制。预热空气进行助燃是一种较好的方法,一般配置在加热炉上,也可强化燃烧,加快炉子的升温速度,提高炉子热工性能。如此,就能满足工艺的要求,还可以达到节能的效果。

隧道窑窑炉是利用逆流原理工作的,热量的保持和余热的利用都很良好,因此燃料很节省,符合节能这一理念。

1、隧道窑在正常生产时,预热带烟气分散排出口,汇总烟道要定期清灰;

2、窑顶不宜堆放重物;

3、事故处理孔等窑内外相通连的孔洞应堵塞,防止漏风;

4、砂封槽要定期加砂,砂粒粗细严格按照操作规程中的要求粘度,否则太大会挤破砂封槽,经常检查各风机的运转情况,要做到经常加油;

a.熄火之前进车方法:可用空匣钵堆码10车左右进窑,然后推进空窑车。

b.逐步地降低预热带的总抽力。

c.空车推至高温点后,由烧成带前端向后逐步熄火,待制品车离开烧成带后最后一对燃烧室或喷嘴熄火。

d.按正常生产时的进车速度,继续进空车,适当调节冷却带冷热风量,使已烧成的制品按一定的降温速度冷却后出窑。

e.随着温度的下降,适时调节窑顶拉杆的松紧。

f.当空车挤满窑道内部可停止进车,关闭冷却带的冷热风机,烟道闸板全部开启,打开窑门,关闭所有风机闸板,开启所有事故处理孔。收妥仪器仪表、热电偶送检验。

在生产过程由于突发事故,必须熄火检修,此时不可采用鼓风机送风强制冷却且特别要注意经常调节拉杆。紧急停窑时降温情况可参照:

a.800℃以上每小时降200℃;

d.300℃以下每小时降100℃。

}

我要回帖

更多关于 旋转隧道窑 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信