开停车过程中合成塔汽包液位如何控制?

蒸发结晶系统中,压缩机是十分关键的一个环节,今天带大家了解关于压缩机的60问答。

1.离心式压缩机的特点有哪些?

离心式压缩机是透平式压缩机的一种,具有处理气量大、体积小、结构简单,运转平稳,维修方便以及气体不受油污染,可采用的驱动形式较多等特点。

2.离心式压缩机的工作原理?

一般来说,提高气体压力的主要目标就是增加单位容积内气体分子的数量,也就是缩短气体分子与分子之间的距离,为了达到这一目标,采用气体动力学的方法,即利用机械的作功元件(高速回转的叶轮),对气体作功,使气体在离心式的作用下压力得到提高,同时动能也大为增加,随后在扩压流道内这部分动能又转变为静压能,而使气体压力进一步提高,这就是离心式压缩机的工作原理。

3.离心式压缩机常见的原动机有哪些?

离心式压缩机常见的原动机有:电动机、汽轮机、燃汽轮机等。

4.离心式压缩机的辅机设备有哪些?

离心式压缩机主机的运行是以辅机设备的正常运行为前提的,辅机包括以下几个方面:

(4)电气仪表系统即控制系统。 

5.离心式压缩机按结构特点分哪几种类型?

离心式压缩机按结构特点可分为:水平剖分式、垂直剖分式、等温压缩式、组合式等类型。

6.转子由哪些部分组成?

转子包括主轴、叶轮、轴套、轴螺母、隔套、平衡盘和推力盘。

级是离心式压缩机的基本单元,它是由一个叶轮和一组与其相配合的固定元件所构成。

每一进气口到排气口之间的级组成一个段,段由一个或几个级组成。

离心式压缩机的缸由一个或几个段组成,一个缸可容纳的级数最少一级,最多达到十级。

高压离心式压缩机有时需要由两个或两个以上的缸组成,由一个缸或几个缸排列在一条轴线上成为离心式压缩机的列,不同的列,其转速不一样,高压列的转速高于低压列,同一转速(同轴)的列,高压列的叶轮直径大于低压列。

11.叶轮的作用是什么?按结构特点有哪几种类型?

叶轮是离心式压缩机对气体介质作功的唯一元件,气体介质在高速旋转的叶轮的离心推力下,随叶轮一起作旋转运行,从而获得动能,并由扩压器部分地转化为压力能,在离心力的作用下,由叶轮口甩出,沿扩压器、弯道、回流器进入下一级叶轮进一步增压,直至由压缩机出口排出。

叶轮按结构特点可分为:开式、半开式、闭式3种类型。

12.什么是离心式压缩机的最大流量工况?

当流量达到最大时的工况即为最大流量工况,造成这种工况有两种可能:

一是级中某流道喉部处的气流达到临界状态,这时气体的容积流量已是最大值,任凭压缩机的背压再降低,流量也不可能增加,这种工况也成为“阻塞”工况。

二是流道内并没有达到临界状态,即未出现“阻塞”工况,但压缩机在较大的流量下,机内流动损失很大,所能提供的排气压力已很小,几乎接近零能量,仅能够用来克服排气管道中的阻力以维持这样大的流量,这就是离心式压缩机的最大流量工况。

13.什么是离心式压缩机的喘振?

离心式压缩机在生产运行过程中,有时会突然产生强烈的振动,气体介质的流量和压力也出现大幅度脉动,并伴有周期性沉闷的“呼叫”声,以及气流波动在管网中引起“呼哧”“呼哧”的强噪声,这种现象称为离心式压缩机的喘振工况。 

压缩机不能在喘振工况下长时间运行,一旦压缩机进入喘振工况,操作人员应立即采取调节措施,降低出口压力,或增加进口,或出口流量,使压缩机快速脱离喘振区,实现压缩机的稳定运行。

14.喘振现象的特征是什么?

离心式压缩机运行一旦出现喘振现象,则机组和管网的运行具有以下特征:

(1)气体介质的出口压力和入口流量大幅度变化,有时还可能产生气体倒流现象。气体介质由压缩机排出转为流向入口,这是危险的工况。

(2)管网有周期性振动,振幅大,频率低,并伴有周期性的“吼叫”声。

(3)压缩机机体振动强烈,机壳,轴承均有强烈的振动,并发出强烈的周期性的气流声,由于振动强烈,轴承润滑条件会遭到破坏,轴瓦会烧坏,甚至轴被扭断,转子与定子会产生摩擦,碰撞,密封元件将遭到严重破坏。

15.如何进行防喘振调节?

喘振的危害极大,但至今无法从设计上予以消除,只能在运转中设法避免机组运行进入喘振工况,防喘振的原理就是针对引起喘振的原因,在喘振将要发生时,立即设法把压缩机的流量增大,使机组运行脱离喘振区。防喘振的方法具体有三种:

(1)部分气体防空法。

(2)部分气体回流法。

(3)改变压缩机运行转速法。

16.压缩机运行低于喘振极限的原因?

(2)进口管线阀门被节流。

(3)出口管线阀门被节流。

(4)防喘振阀门有缺陷或者调节不正确。

17.离心式压缩机的工况调节方法有哪些? 

由于生产上工艺参数不可避免地会有变化,所以经常需要对压缩机进行手动或自动调节,使压缩机能适应生产要求在变工况下操作,以保持生产系统的稳定。 

离心式压缩机的调节一般有两种:一是等压调节,即在背压不变的前提下调节流量;另一种是等流量调节,即在保证流量不变的情况下调节压缩机的排气压力,具体说有以下五种调节方式:

(1) 出口流量调节。

(2) 进口流量调节。

(3) 改变转速调节。

(4) 转动进口导叶调节。

(5) 部分放空或回流调节。

18.转速对压缩机的性能有何影响?

压缩机的转速具有改变压缩机性能曲线的功能,但效率是不变的,因此,它是压缩机调节方法的最好形式。

19.等压力调节、等流量调节和比例调节的含义是什么?

(1)等压力调节是指保持压缩机的排气压力不变,只改变气体流量的调节。

(2)等流量调节是指保持压缩机输送气体介质的流量不变,只是改变排出压力的调节。

(3)比例调节是指保持压力比不变(如防喘振调节),或保持两种气体介质的容积流量百分比不变的调节。

20.什么是管网?它的组成要素是什么?

管网是离心式压缩机实现气体介质输送任务的管道系统,位于压缩机入口之前的称为吸入管道,位于压缩机出口之后的称为排出管道,吸入和排出管道之和为一完整的管道系统通常称为管网。

管网一般均由管线、管件、阀门和设备等4要素组成。

21.轴向力的危害是什么?

高速运行的转子。始终作用着由高压端指向低压端的轴向力。转子在轴向力的作用下,将沿轴向力的方向产生轴向位移,转子的轴向位移,将使轴颈与轴瓦间产生相对的滑动。

因此,有可能将轴颈或轴瓦拉伤,更严重的是,由于转子位移,将导致转子元件与定子元件产生摩擦、碰撞乃至机械损坏,由于转子的轴向力,有导致机件摩擦、磨损、碰撞乃至破坏机器的危害,所以,应采取有效的措施予以平衡,以提高机组的运行可靠性。

22.轴向力有哪些平衡方法?

轴向力的平衡是多级离心式压缩机设计时需要终点考虑的奇数问题,目前,一般多采用以下两种方法:

(1) 叶轮对置排列(叶轮高压侧与低压侧背靠背排列)

单级叶轮产生的轴向力,其方向指向叶轮入口,即由高压侧指向低压侧,如果多级叶轮按顺序方法排列,则转子总的轴向力为各级叶轮轴向力之和,显然这样排列会使转子轴向力很大。

如果多级叶轮采用对置排列,则入口相反的叶轮,产生一个方向相反的轴向力,可以相互得到平衡,因此对置排列是多级离心式压缩机最常用的轴向力平衡方法。

平衡盘是多级离心式压缩机常用的轴向力平衡装置,平衡盘一般多装于高压侧,外缘与汽缸间设有迷宫密封,从而使高压侧与压缩机入口连接的低压侧保持一定的压差,该压差产生的轴向力,其方向与叶轮产生的轴向力相反,因此平衡因叶轮产生的轴向力。

23.转子轴向力平衡的目的是什么?

转子平衡的目的, 主要是减少轴向推力, 减轻止推轴承的负荷, 一般情况下轴向力的70℅是通过平衡盘消除,剩余的30℅是有止推轴承负担,生产实践证明,保留一定的轴向力,是提高转子平稳运行的有效措施。

24.推力瓦温度升高的原因是什么?

(1)结构设计不合理,推力瓦承载面积小,单位面积承受负荷超标。

(2)级间密封失效,使后一级叶轮出口气体泄漏至前一级,增加叶轮两侧的压差,形成了较大的推力。

(3)平衡管堵,平衡盘副压腔压力无法卸掉,平衡盘作用不能正常发挥。 

(4)平衡盘密封失效,工作腔压力不能保持正常,平衡能力下降,并下降部分载荷传至推力瓦造成推力瓦超负荷运行。

(5)推力轴承进油节流孔径小,冷却油流量不足,摩擦产生的热量无法全部带出。

(6)润滑油中带水或含其他杂质,推力瓦不能形成完整的液体润滑。 

(7)轴承进油温度过高,推力瓦工作环境不良。

25.如何处理推力瓦温度过高?

(1)校核推力瓦受压压强,适当扩大推力瓦承载面积,使推力承受载荷在标准范围内。

(2)解体检查级间密封,更换损坏的级间密封零件。

(3)检查平衡管,消除堵塞物,使平衡盘副压腔的压力能及时卸掉,保证平衡盘平衡能力的发挥。

(4)更换平衡盘密封条,提高平衡盘的密封性能,保持平衡盘工作腔的压力,使轴向推力得到合理的平衡。

(5)扩大轴承进油节孔的孔径,增加润滑油量,使摩擦产生的热量能及时带出。

(6)更换新的合格润滑油,保持润滑油的润滑性能。

(7)开大有冷却器进回水阀,增大冷却水量,降低供油温度。

26.合成系统严重超压时,联合压缩机人员应如何处理?

(2)通知联合压缩机现场巡检人员打开压缩机二段出口手动放空进行泄压(紧急情况时),并注意操作人员监护、防毒。

27.联合压缩机怎样对合成系统打循环?

合成系统开车前需要对合成在一定压力下进行充氮气、升温。因此需要启动合成气压缩机对合成系统建立循环。

(1) 按正常开车程序启动合成气压缩机汽轮机,空载运行至正常转速。

(2) 维持一定的防喘振冷却器后气体入一段进气回流,回流量不宜过大,并注意不得超温。

(3) 用循环段防喘振阀控制入合成系统气量和压力,维持好合成塔温度 。

28.合成系统需要紧急切气(压缩机不停车)时,联合压缩机怎样进行操作?

联合压缩机需要进行紧急切气操作:

(1) 向调度室汇报联合压缩机紧急切气,将一级密封切换成中压氮气,联合压缩机入工段(净化出工段)放空,注意保压。

(2) 打开新鲜段防喘振阀新鲜气减量,打开循环段防喘振阀循环气减量。

(4) 打开压缩机二段出口放空阀PV2620并以≤0.15Mpa∕min的速率卸掉机体压力,合成气压缩机空负荷运行;合成系统泄压。

(5) 合成系统事故处理完毕后,从联合压缩机入口充入氮气进行合成系统置换,打循环,合成系统保温保压。

29.如何进行新鲜气加量?

一般情况下,入工段阀门XV2683为全开状态,控制新鲜气量只能也只有通过防喘振冷却器后新鲜段防喘振阀来实现,通过关闭一段防喘振阀来减少回流气量,达到增加新鲜气量的目的。

30.如何通过压缩机控制空速?

用合成气压缩机控制空间速度就是通过增加或减少循环量来实现空间速度的大小改变,所以在新鲜气量一定的情况下,增加合成循环气量,空速就相应提高,但空速的提高对甲醇合成反应会有一定的影响。

31.联合压缩机紧急停车步骤?

由于电源、油泵、爆炸、着火、停水、停仪表气、压缩机喘振无法消除等故障发生时,该压缩机紧急停机。如遇系统着火应迅速切断丙烯气源并用氮气置换保压。

(1)现场或控制室打闸紧急停止压缩机运行,如果可能,测量并记录滑行时间。

(2)如果油循环继续运行(非停电情况下,且有低压氮气气源),转子停止转动后立即进行盘车;如果全厂停电,应及时将射水泵、凝结水泵、油泵操作按扭旋致断开位置,防止供电恢复后泵自启。

(3)及时将一级密封切换成中压氮气,并确认关闭XV2683、XV2682、XV2681,控制室打开PV2620并控制泄压速率≤0.15Mpa∕min将压缩机系统压力卸掉。如果是停电或停仪表空气,此时XV2681自动关闭,应通知压缩机岗位人员开压缩机二段出口阀手动泄压。

(4)当真空度接近零时停射水泵,停轴封蒸汽。

(5)注意调节再循环量,必要时稍微打开补充脱盐水阀,当抽气器进气阀关闭后停凝结水泵。

(6)查明紧急停机的原因。

32.合成循环量加不上去的原因有哪些?

(1)新鲜气量较低,在反应较好时,体积缩小,压力下降过快,造成出塔压力较低,这时需要提高空间速度控制合成反应速度。 

(2)合成系统放空量(弛放气量)过大,PV2001过大。

(3)循环气防喘振阀开度过大,造成气体大量回流。

33.合成系统与联合压缩机的联锁有哪些?

(1)汽包液位低限≤10℅,与联合压缩机联锁,XV2683关闭,防止汽包干锅。 

(2)甲醇分离器液位高限≥90℅,与联合压缩机联锁跳车保护,XV2681、 XV2682、XV2683关闭,防止液体进入联合压缩机汽缸损坏叶轮。 

(3)合成塔热点温度高限≥275℃,与联合压缩机联锁跳车。

34.合成循环气温度过高应如何处理?

(1)观察合成系统循环气温度是否升高,如高于指标应减少循环量或通知调度提高水压或降低水温。

(2)观察防喘振冷却器回水温度是否升高,如有升高则气体回流量过大造成冷却效果差,此时应加大循环量。

35.合成开车时,如何进行新鲜气与循环气的交替加量?

合成开车时由于气体温度较低,催化剂热点温度较低,合成反应受到限制,此时加量应以稳定催化剂床层温度为主。

因此,在新鲜气加量之前应先加循环量(一般循环气量是新鲜气量的4~6倍),然后再加新鲜气量,加量过程要缓慢,要有一定的时间间隔(主要看催化剂热点温度能否维持,并呈上升趋势),在气量加至一定程度后可要求合成关小开工蒸汽。关小新鲜段防喘振阀加新鲜气量。关小循环段防喘振阀加循环气量。

36.合成系统开停车时,如何用压缩机进行保温保压?

从联合压缩机入口充入氮气对合成系统进行置换、充压,联合压缩机与合成系统进行打循环,一般根据合成系统压力决定系统放空,利用空速来维持合成塔出口温度,开启开工蒸汽提供热量,合成系统低压低速循环保温。

37.合成系统开车时,如何进行合成系统提压?提压速度控制为多少?

合成系统提压主要是依靠提高新鲜气量和提高循环气压力实现的,具体来说关小新鲜段防喘振可提高合成新鲜气量;关小循环段防喘振阀可以控制合成压力。正常开车时,合成系统提压速度一般控制在0.4MPa/min。

38.合成塔升温时,如何用联合压缩机控制合成塔的升温速度?升温速度控制指标是多少?

升温时,一方面开启开工蒸汽提供热量,带动炉水循环,使合成塔温度升高;另一方面启动联合压缩机,利用循环段加气和合成气排出气体进行合成系统气体循环,控制热量,稳定塔的升温幅度,因此在升温操作时主要靠调节循环量进行调节塔的温升。升温速度的控制指标为25℃/h 。

39.如何进行新鲜段和循环段防喘振气体流量调节?

当压缩机的运行工况接近喘振工况时,应进行防喘振调节,调节前为防止系统气量波动波动过大,首先判断和确定哪一段接近喘振工况,然后适当开大该段的防喘振阀门进行消除,并注意系统气量的波动情况(尽可能维持入塔气量的稳定),但不得同时开启两个防喘振阀门消除喘振。

(1)前系统输送的工艺气体温度高,气体未完全被冷凝,气体输送管道过长,经过管道冷凝后气体中含有液体。

(2)工艺系统温度高,气体介质中沸点较低的组分被冷凝成液体。   

(3)分离器液位过高,产生气液夹带。

41.如何处理压缩机入口带液?

(1)联系前系统,调整工艺操作。   

(2)本系统适当提高分离器排液次数。   

(3)降低分离器液位高度,防止气液夹带。

42.联合压缩机机组性能下降的原因有哪些?

(1)压缩机级间密封严重损坏,密封性能降低,气体介质内部回流增加。 

(2)叶轮磨损严重,转子功能下降,气体介质得不到足够的动能。

(3)汽轮机蒸汽过滤网堵塞,蒸汽流通受阻,流量小,压差大,影响汽轮机的输出功率,降低了机组性能。

(4)真空度低于指标要求,汽轮机排气受阻。

(5)蒸汽温度、压力参数低于操作指标,蒸汽内能低,不能满足机组生产运行要求。

43.离心式压缩机有哪些主要性能参数?

离心式压缩机的主要性能参数有:流量、出口压力或压缩比、功率、效率、转速、能量头等。

设备的主要性能参数是表征设备结构特点、工作容量、工作环境等方面的基本数据,是用户选购设备、制定规划的重要指导性材料。

44.效率的含义是什么?

效率是表征离心式压缩机传给气体能量的利用程度,利用程度越高,压缩机的效率就越高。

由于气体压缩有多变压缩、绝热压缩和等温压缩3种过程,因此,压缩机的效率也分为多变效率、绝热效率和等温效率。

45.压缩比的含义是什么?

我们所说的压缩比就是指压缩机排出气体压力与进气压力之比,所以有时也称压力比或压比。

46.润滑油系统由哪些部分组成?

润滑油系统由润滑油站、高位油箱、中间连接管线以及控制阀门和检测仪表所组成。

润滑油站由油箱、油泵、油冷却器、滤油器、压力调节阀、各种检测仪表以及油管路和阀门组成。

47.高位油箱的作用是什么?

高位油箱是机组安全保护措施之一,机组正常运行时,润滑油从底部进入,而从顶部排出直接回油箱,一旦发生停电停机事故,辅助油泵油不能及时启动供油,则高位油箱的润滑油将沿进油管线流经各个润滑点后回油箱,确保机组的惰走过程对润滑油的需要。

48.联合压缩机机组有哪些安全保护措施? 

49.迷宫式汽封的密封作用原理是什么?

通过把位能(压力)转换成动能(流动速度)再把动能以涡流的形式消散。

50.推力轴承的作用?

推力轴承的作用有两个:承受转子的推力,并给转子轴向定位。推力轴承承受平衡活塞还没有平衡的部分转子推力以及齿式联轴器传过来的推力,这些推力的大小主要决定于汽轮机负荷。另外,推力轴承也起到固定转子相对于汽缸轴向位置的作用。

51.为什么联合压缩机在停车时要尽快卸掉机体压力?

因为压缩机长时间带压停机,如果一级密封气进气压力不能高过压缩机进口压力,机内未经过滤的工艺气体窜进密封后将密封造成破坏。

离心式压缩机要想获得良好的运行效果,必须在转子与定子之间保留一定的间隙,以避免其间的摩擦、磨损以及碰撞、损坏等事故的发生。

同时由于间隙的存在,自然会引起级间和轴端的泄漏现象,泄漏不仅降低了压缩机的工作效率,而且导致了环境污染,甚至发生爆炸事故。

因此泄漏现象是不能允许产生的。密封就是保留转子和定子之间有适当的间隙的情况下,避免压缩机级间泄漏和轴端泄漏的有效措施。

53.密封装置按结构特点分为哪几种?选用原则是什么?

根据压缩机的工作温度、压力和气体介质有无危害等条件,则密封采用不同的结构形式,并通称它为密封装置。

密封装置按结构特点分为:抽气式、迷宫式、浮环式、机械式和螺旋式等5种形式。一般有毒有害、易燃易爆气体,应选用浮环式、机械式、螺旋式以及抽气式等密封装置;如果气体无毒无害,升压较低,则可选用迷宫式密封装置。 

54.什么是气体密封?

气体密封是一种以气体介质作润滑剂的非接触式密封,通过密封元件结构的巧妙设计及其性能的发挥,可使泄漏减少至最低程度。

(1)密封座与转子相对固定

在密封座与一次环相对的端面上(一级密封面)设计出密封块和密封坝。密封块的尺寸大小不同形状各异。当转子高速旋转时,使其注入期间的气体产生一种压力,从而将一次环推开,形成气体润滑,减轻一次密封面的磨损,并可阻止气体介质漏至最低限度,密封坝用于停车时组织气体外露。

(2)这种密封需要一种稳定的密封气源,它可以是介质气体,也可以是惰性气体,不论使用哪种气体,都必须是经过过滤、称为干净的气体。

55.如何选用干气密封?

对于要求既不允许工艺气体泄漏到大气中,又不允许阻封气体进入机内的情况,采用中间进气的串联式干气密封。

普通串联式干气密封适用于少量工艺气体泄漏到大气中的工况,大气侧的一级密封作为保险密封。

56.一级密封气的主要作用是什么?

一级密封气的主要作用是为了防止联合压缩机内不洁净气体污染一级密封端面。同时随着压缩机的高速旋转,通过一级密封端面螺旋槽泵送到一级密封放空火炬腔体,并在密封端面间形成刚性气膜,对端面起到润滑、冷却等作用。该气体绝大部分通告轴端迷宫进入机内,只有少部分气体通过一级密封端面进入放空火炬腔体。

57.二级密封气的主要作用是什么?

二级密封气的主要作用是阻止从一级密封端面泄漏的少量气体介质进入二级密封端面,并保证二级密封安全可靠运行,其大部分气体与一级密封端面泄漏的少量气体介质经一级密封放空火炬腔体进入放空火炬管线,只有少部分气体通过二级密封端面进入二级密封放空腔后高点放空。

58.后置隔离气的主要作用是什么?

后置隔离气的主要是保证二级密封端面不受联合压缩机轴承润滑油的污染。其中一部分气体通过后置密封内侧梳齿迷宫与从二级密封端面泄漏的少部分气体高点放空;另一部分气体通过后置密封外侧梳齿迷宫经轴承润滑油放空口放空。

59.干气密封系统投运前操作注意事项有哪些?

(1)润滑油系统开车前10分钟投入后置隔离气。同样油停运10分钟后方可切断后置隔离气。油运开始后,后置隔离气就不能停止,否则会对密封造成损坏。 

(2)投用过滤器时应缓慢打开过滤器上下球阀,防止因打开过快对过滤器滤芯造成瞬间压力冲击而损坏。

(3)投用流量计应缓慢打开上下球阀,使流量保持稳定。

(4)检查一级密封气源,二级密封和后置隔离气的气源压力是否稳定,过滤器是否堵塞。

开车前V2402、V2403应提前建立正常液位,具体步骤如下:

(1)建立液位前提前打开V2402、V2403导淋至V2401管线上阀门,确认管线上“8”字盲已经倒换,确认该导淋入V2401阀门关闭,确认LV2420及其前后截止阀全开,确认FV2401、FV2402全开; 

(2)将丙烯导入到V2402是根据压力差来实现的,逐个微开V2401出口总阀、XV2482、V2401至V2402阀门、LV2421及其前后截止阀,缓慢建立V2402的丙烯液位。 

(3)由于V2402、V2403之间压力平衡,只能通过液位差将丙烯导入到V2403。

(4)导液过程务必缓慢,防止V2402、V2403超压,V2402、V2403建立正常液位后应关闭LV2421及其前后截止阀,关闭V2402、V2403导淋至V2401管线上法门,并将盲板恢复。

}


如上图所示 ,图为焦炉煤气制造甲醇最基本的工艺流程,净化与转化在整个焦炉煤气制甲醇流程中的关键技术。

2、焦炉煤气的净化工艺

焦炉气的净化总的来说有三大步骤:

(1)焦炉气经过捕捉、洗涤、脱酸蒸氯等化工过程,将有害的物质脱除到甲醇合成催化剂所要求的精度,进入焦炉气柜 ;

(2)脱硫分无机硫的脱除和有机硫的脱除,具体的方法根据系统选择工艺方案而改变;

(3)焦炉煤气的深度净化,在精脱硫后再深度脱除氯离子和羰基金属,防止其对甲醇合成催化剂的毒害。

(1)几乎全部的无机硫和极少部分的有机硫能够在焦化厂化产湿法脱硫时脱掉;

(2)绝大部分的有机硫的脱除采用的是干法脱除,具体的有分为4种:吸收法 、水解法 、热解法和加氢转化法,其中水解法和加氢转化法在国内外化工工艺上用的最为普遍 。

3、焦炉煤气的烷烃转化技术

目前具体的方法有:蒸汽转化工艺 、纯氧非催化部分氧化转化工艺 、纯氧催化部分氧化转化工艺 。

其原理类似于天然气制甲醇两段转化中的一段炉转化机理,不过考 虑到焦炉煤气的甲烷含量只有天然气的1/4,所以在焦炉煤气制造甲烷的实际工艺选择中,该方法一般不被采用。

2)纯氧非催化部分氧化转化工艺

从理论上分析 ,该工艺具有以下几个优点:

(1)该工艺能够生成的 合成气比较接近于最佳氢碳比;

(2)合成甲醇时循环气中含有的惰性气比例较小,便于节能减排;

(3)该工艺在转化时没有催化剂要求,所以对原料气要求不是太严格,焦炉煤气转化前不需要进行深度脱硫净化;

(4)非催化部分氧化转化工艺大大简化了脱硫净化过程,而且脱硫精度高,降低了原料气净化成本,转化过程中排放硫 化物对环境的二次污染明显降低, 是将来焦炉煤气净化与转化的发展方向 。

但是由于技术上的问题,到目前为止尚没有非催化部分氧化转化工艺的商业化应用的先例,因此不采用纯氧非催化部分氧化转化工艺 。

3)纯氧催化部分氧化转化工艺

降低转化温度,加入蒸汽参与烷烃转化,加入催化剂加快转化反应速度,这就是纯氧催化部分氧化转化技术。如果原料气的总硫体积 分数超标,可在催化部分氧化转化后接着串接氧化锌脱硫槽,使原料气从氧化锌脱硫槽中流过,促使合成气的总硫体积分数达标 。与非催化部分氧化法相比,该转化工艺,燃料气和氧气的消耗不高,而且转化炉结构比较简单,造价相比而言较低,其规模化商业应 用业绩显著,在目前焦炉煤气烷烃转化方案中应用最为广泛 。

4、甲醇合成与精馏工艺技术

根据合成压力,可以将甲醇的合成工艺分为高压 、中压和低压法三种,焦炉煤气制甲醇合成技术全部为低压法。目前,国内外有多种低压法甲醇合成工艺,其原理大同小异,不同之处主要在于甲醇 反应器的结构 、反应热移走及回收利用方式、催化剂性能 。

2)甲醇精馏工艺(粗甲醇精馏工艺流程)

甲醇精馏工艺如图所示,粗甲醇的精馏采用由预精馏塔、加压精馏塔 、常压精馏塔组成的三塔精馏系统 。

合成气可用于生产甲醇、天然气、二甲醚、合成油、乙二醇等产品,以下主要来介绍合成气制甲醇的工艺。。

由合成气生产甲醇,工艺有许多。按压力可分为:高压法、中压法、低压法。按工艺流程(反应器)分,目前主要有:鲁奇工艺(水管式反应器)、卡萨利工艺(绝热冷激式反应器)、托普索工艺(上冷盘管换热、下水管式)、国内的轴—径向冷激式塔工艺、水板式反应器工艺、气冷换热均温型塔、气液混合换热式反应器工艺等。按产品品种分,可分为:单甲醇工艺、合成氨联醇工艺。

甲醇工艺分为高压甲醇、中压联醇和低压甲醇。

高压甲醇设备压力等级高,生产能力小,能耗高,目前高压单甲醇工艺基本淘汰(32MPa);合成氨厂还有高压联醇工艺(22MPa)。其工艺流程一般如下:

高压单甲醇的反应器以前多为单管折流反应器,目前高压联醇的反应器以南京国昌的二轴----二径反应器居多。

中压联醇工艺主要用于合成氨厂的气体净化,使用压力:12~13MPa。

目的是净化合成氨的合成气,同时也可机动灵活生产一定量的甲醇,一般反应器的进口CO:4~5%,出口CO:1%以下;反应器入口CO2:≤0.5%,出口:0.2%以下。

低压甲醇的压力等级因工艺不同而差异较大。在合成氨联产甲醇的工艺中,压力有2.8MPa的,但多数是5MPa。低压联醇反应入口CO多控制在:5~8%,CO2多控制在:1~2%。

而低压单甲醇工艺,因产能不同、所用工艺包不同,压力等级也不相同。产能小的工厂,压力等级就低,一般低的为5MPa;产能大的工厂,压力等级就高,高的达到9MPa。国外工艺包压力等级高,催化剂用量少,国内工艺包压力等级低,催化剂用量多。

上图为濮阳大化的低压甲醇工艺流程图。

上图是山东鲁化的低压甲醇工艺流程图。

上图是湖北三宁的低压联醇工艺流程图。

甲醇合成操作52个问答

1、甲醇合成工段的主要任务是什么?

在高温、高压和有催化剂的条件下,使H2、CO和CO2混合气在合成塔内反应生成甲醇,反应后的气体经冷却、冷凝,分离出甲醇,未反应的气体和补充的新鲜气经升压后返回合成塔继续反应,甲醇合成产生的反应热用于副产2.5Mpa的蒸汽。

2、甲醇合成过程中的化学反应有哪些?

由此可见,甲醇反应过程中有一系列副反应,生成了水和几十种微量的有机杂质,这些含有水和有机杂质的甲醇称为粗甲醇。

3、甲醇合成反应的特点是什么?

(4)需要触媒才能进行的气-固相反应。

4、影响甲醇反应的因素有哪些?

5、温度是如何影响甲醇反应的?

从热力学观点来看,低温有利于甲醇的合成,但从动力学角度来看,提高反应温度能提高反应速度,所以必须兼顾这两个条件,选择最适宜的反应温度。

温度过低达不到催化剂的活性温度,反应不能进行;温度太高,反应过快,温度难以控制,易使催化剂衰老失活,而且随着温度逐渐增加,平衡常数逐渐降低,反应速度甚至下降。另外,反应温度越高,副反应增多,所以对于一定的反应物组成应有一个最适宜的反应温度。

6、压力对甲醇合成反应的影响如何?

压力的高低,取决于使用触媒的性质,对铜基触媒而言,压力越高,反应越易向生成甲醇的方向进行,平衡甲醇含量越高,甲醇越易冷凝及分离,生产强度越高。

7、甲醇催化反应过程有几个步骤?

答:甲醇合成反应是一个气固相催化反应的过程,共分五步:

(1)CO和H2扩散到催化剂表面;

(2)CO和H2被催化剂表面吸附;

(3)CO和H2在催化剂表面进行化学反应;

(4)CH3OH在催化剂表面脱附;

(5)CH3OH扩散到气相中去。其中第三步进行的较慢,整个反应过程取决于该步骤进行的速度,因此,影响反应的各个因素应控制在最合适反应进行的条件下。

8、催化剂层的灵敏温度和热点温度各指什么为什么要严格控制热点温度?

催化剂的灵敏温度,是指入催化剂层的第一个点,由它来反映出催化剂层中的温度变化。热点温度,指的是催化剂层中的最高温度。这个温度虽是催化剂层内某一点的温度,但能全面反映温度的操作情况,所以要严格控制。热点温度应根据不同型号的催化剂和催化剂在不同时期的活性及当时的操作条件,而有所变动。

9、在实际操作中为什么尽可能将热点温度维持低些?

(1)热点温度低,对甲醇反应的平衡有利;

(2)可以延长催化剂的使用寿命;

(3)高温容易破坏金属的机械性能和加速化学腐蚀。由反应理论可知,催化剂理想的温度分布是先高后低,即热点位置在催化剂上部。

10、热点温度为什么会下移?

(1)催化剂长期处于高温下或温度波动大,活性下降。

(2)毒物影响致使上层催化剂活性下降,热点下移。

(3)催化剂还原不好,上层催化剂活性较差,热点下移。

(4)操作不当,循环气量过大,使上层温度下降,热点下移。

11、如何控制合成塔的温度?

合成塔的温度主要是通过调节汽包蒸汽压力来控制的,在4.0Mpa附近,蒸汽压力变化0.1Mpa,对应温度变化约1.35℃,利用合成汽包蒸汽压力来控制塔温度,既简单又可靠。合成塔的温度一般随触媒使用时间的不同而做适当的调整。当通过调整温度、压力和空速也不能维持甲醇产量或合成塔压差超过规定值时,则需停车更换触媒。

12、合成塔催化剂层的温度突然下降,可能有哪些因素如何处理?

(1)液体甲醇带入塔内会引起催化剂层的温度迅速下降。

(2)气体组分的变化使合成塔催化剂层的温度下降。如新鲜气氢碳比不当,甲烷含量增多都会影响甲醇合成反应,减少了反应热量使合成塔催化剂层的温度下降。

(3)新鲜气量突然减少,也会引起合成塔催化剂层的温度下降。气量减少原因也可能是压缩机跳车或设备、管道的泄漏引起的。

(4)合成塔内件损坏。

(5)仪表失灵而引起的温度下跌假象。

13、合成塔催化剂层温度上涨的原因?

(1)循环气量减少会使塔温上升。

(2)气体组分变化,如新鲜气中甲烷含量下降也会使塔温上涨。

(3)仪表失灵引起的温度上涨假象。

14、合成塔进口压力上涨有哪些原因?

合成甲醇时,无论采用何种生产工艺,其反应压力都有一个平衡点,在正常生产时这个压力平衡点较为稳定,压力如上涨,可能有以下几个原因:

(1)反应温度下跌,合成反应变差,甚至恶化。而新鲜气源又不断送入造成系统压力上涨,甚至超压。

(2)循环气中甲烷含量升高会影响甲醇合成反应,也是造成进口压力上涨的原因。

(3)合成气经循环水冷却器时冷却效果差,使生成的甲醇不能分离出去。

(4)增加新鲜气量而未及时通知合成岗位。

(5)触媒活性下降,转化率不高。

15、合成塔进口压力下降有哪些原因?

生产中如发现合成塔进口压力突然或缓慢下降,应引起重视,查明原因。

(1)新鲜气量突然减少会引起合成塔进口压力下降。

(2)粗甲醇分离器液位失控引起跑气。

(3)合成系统的设备、管道损坏引起泄漏。

16、对甲醇合成触媒的要求是什么?

(2)耐热、抗毒性好;

(3)机械强度高,阻力小;

(4)原料易得,价格便宜。

17、铜基触媒为什么要还原?

厂家生产的触媒是氧化态的,而氧化态的触媒没有活性,必须把其中的氧化铜还原才具有活性,即将触媒中组分CuO还原为单质铜。并和组分中的ZnO熔固在一起,才具有活性。铜基触媒还原的反应方程式:CuO H2===Cu H2O Q。该反应为放热反应,还原过程出水量为催化剂重量的20%左右。

18、催化剂的装填有什么要求?

(1)整个过程专人负责,包括从领出到装填完毕。

(2)轻搬轻放,严禁猛摔猛抛,避免催化剂破损。

(3)催化剂绝对不能受潮。

(4)装填时严禁任何杂物混入塔内,尤其是铁质,因为铁在合成塔内是促使合成产生甲烷的催化剂。

(5)催化剂应均匀的装入每个列管内,使每个管内间隙松实一致。

19、催化剂还原时为什么要向系统内加氢气加氢气时注意哪些问题?

在采用低氢还原法时,将催化剂中的氧还原出来生成水,加氢气就是催化剂开始化学反应,出化学水。

加氢气时一定要缓慢,切忌过猛过快。如果加氢气过猛易使催化剂剧烈反应,造成局部烧结或局部快速还原出水,使催化剂还原颗粒快速长大,活性大幅度下降,严重时整炉催化剂活性受损报废,损失极大。

20、催化剂升温还原中的注意事项有那些?

(1)系统置换时,要使O2<0.2%。

(2)补氢时切忌间断加氢或猛加氢。

(3)炉温控制要稳,严防过热或温度忽高忽低。

(4)升温时要靠蒸汽的热量,不得用反应热来调节温度。

(5)温度升到100℃时注意仪表的准确性。

(6)如遇循环机跳车时,应立即停止加热,停止补氢。

(7)还原结束时,出口温度应到达要求(视不同型号催化剂而定)。

(8)出水量控制在30Kg/h以下。

(9)每小时记录一次出水量、温度、压力等、每班做2-3次氢含量分析。

21、影响水冷器冷却效果的主要原因有哪些?

在甲醇生产中,循环水冷却器起着冷却合成气的作用,使甲醇和水冷凝下来。当发现水冷效果不好时,可以从以下几个方面找原因:

(1)水量小或水压低,应开大进水阀或提高水压。

(2)冷却器换热管结垢,清理积垢。

(3)冷却水温度高,联系供水,降低水温。

(4)合成甲醇时有石蜡生成,附着在水冷器管壁上,降低水冷效果。可适当减少冷却水量,用温度较高的合成气来熔化石蜡。

22、影响甲醇分离效率的因素有哪些?

(1)甲醇的冷却温度。

(3)分离器的结构好坏,内件结构是否合理。

(4)适当的气体流速,一般气体流速为1-1.5m/s。

(5)分离器液位的高低。

23、造成分离器出口带液的原因有哪些如何处理?

(1)分离器液位太高,应开大排放阀降低液位。

(2)进分离器的气速过大,使甲醇液滴来不及分离,应减少气速。

(3)分离效果差,设备故障,停车后排除。

24、造成甲醇膨胀槽压力突然猛涨的原因是什么如何处理?

(1)分离器液位低,排放阀开的太大,关小自调阀。

(2)甲醇膨胀槽排液自调失灵全关,应走旁路,并联系仪表检修自调。

(3)精馏工序粗甲醇槽进口阀关,造成膨胀槽液位大幅度上升,因缓冲空间小而压力猛涨。应立即打开贮槽阀及膨胀槽放空阀,将压力调至正常。

25、甲醇分离器压力波动会对合成系统造成什么影响?

压力波动过大时,会引起压缩机入口压力波动,从而引起压缩机的出口压力波动,造成气量波动,最终影响到系统生产的稳定。

}

我要回帖

更多关于 锅炉汽包液位控制系统 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信