碳纤维热压机成型工艺过程是怎样的?

鑫台铭自主研发的碳纤维热压机、玻璃纤维热压机、复合材料热压机高精度,伺服压力控制、大小压力控制、柔性加压、快速真空、慢速多段加压、多段加热等复合材料、碳纤维、玻纤伺服热压机设备。伺服热压机专门用于碳纤维板热压成型,热压机压力可调,单层、多层热压机均可,并可配套自动进出料、自动加热、自动冷却系统。精度高、自动化程度高。

伺服热压成型机有独立的动力机构,由泵、电机、阀集成块、油箱等组成,机身为三梁四柱结构,配合模具实现材料烘烤,升温快速均匀、低温定型,节能高效,抓取成型数据等特点。平面及工作台上平面加工有“T”型槽以固定模具。可智能控制固化成型的温度、压力、保温时间等工艺参数,使一层层碳纤维预浸料结合的更紧密。

玻璃纤维/复合材料热压机

模温机加热:热压机采用模温机加热,温度稳定,误差小。

分段控制:压力、时间、位置等技术参数可分段控制。分段加压,分段加热,曲线升温。碳纤维热压机

压力可控:压力160t(600*600,适合1.0以下片材)。常见压力有100T,300T等。

一出二,10分钟一模。上下板加热,约140°。

鑫台铭热压机采用模温机加热,温度稳定,误差小。压力、时间、位置、速度等技术参数可分段控制。压力有160T,200T,300T等不同规格。间接式抽真空,真空箱内真空度高;抽真空效率高,10秒内真空度达-70mmHg。高精度压力控制,小压力控制,柔性加压,快速真空,慢速多段加压、多段加温等复合材料热压设备。

A、间接式抽真空,在热压化过程不影响树脂含量。

B、在真空状态下热压固化温度更均匀、热散失更小。

C、热压固化过程真空可降低或避免产品表面气泡和沙眼。

D、适合各种慢速加压、多段加压控制工艺。

玻璃纤维/复合材料热压机

1:机台压力分多段设置;

2:机台多段温度设置;

3:机台多段抽真空设置;

4:机台多段时间设置;

5:配备全油式急冷急热系统。

6:配备分段吹起系统。

7:机台所有PLC控制;

9:可分段式温升和温降。

1.主要可成型3D曲面,用途手机、平板电脑后盖等等;

2.具有轻薄、可塑型、可贴合PET、阻燃、耐候性佳等优点,可以提升智能终端产品外观新颖性,还可以带来出色的触控手感。随着消费市场对智能终端产品外观审美要求的变化以及工艺技术的进步,3D曲面玻纤板已逐渐开始应用于智能终端产品的工艺制造。

适应行业:航天航空、汽车饰件、家电面板、3C电子、笔记本、5G产品等行业的制品热压成型。玻纤板3D曲面手机,平板后盖产品成型需要设备。

适应材料:碳纤维、玻璃纤维、改性环氧片材/ABS/PP/PA热塑等复合材料模压成型。

玻璃纤维/复合材料热压机

}

鑫台铭江苏伺服压力机在碳纤维热压成型工艺的作用:---鑫台铭提供。

模温机在热压成型机中的应用。 由于导热油具有流通性能好、热传导部位均匀、供热效率高、应用和检修都非常方便,具有安全系数高,清洁无污染的特点,在热压成型机、热压模具中的得到广泛应用。导热油模温机的导热油在液相环境下油温一般可到300℃以上。导热油的热稳定性能优势,配合灵活准确的控温方式,使用温度调节器,配热电偶多点检测,压板温度在280℃以下可调。对温度以及报警温度值的设定,使控温精度高,一旦温度超过时就报警。配合热压机施压调整,保压时间的设定,避免板材因含水率过高或过低等不良因素引起加工出现残次品。

伺服热压机机台采用四柱上下板定形结构,活动板与工作面平行精度高,中间三件加热活动板均采用四个精密导套使板件平衡上下活动,垂直精度高。加热板温度采用温控模块控制,在常温200℃范围可调、精度±5℃。发热板冷却系统采用循环水冷却。中间采用多块活动发热板可实现多层同时压装成型,提高成产效率,降低产生成本。操作系统采用PLC加触摸屏控制,柔性控制,以适应不同的产品需求。

江苏伺服压力机在碳纤维热压成型工艺的作用

触摸屏操作方式:压装力、压装速度、压入深度、保压时间等全部可以在触摸屏上进行数值输入,界面友好,操作简单。可设定储存多套及多段温度加热程序,工作台面平整精度±0.01mm,平行精度 ±0.015mm/100mm,上下模板加热升温速度:温度0~300℃/20min,温控精度±1℃。

1、本机主要针对各科研单位在不同条件下的测试需求,采用四柱三板式全包围结构、上下固定板,活动板由伺服电机驱动滚珠丝杆进行上下活动;

2、本机有加热系统、电气系统、抽真空系统三大部分组成,根据客户需要可联机控制也可以也可以单独控制、多功能实验级数显真空热压机

3、温度在常温至300℃范围内可调(特殊情况下根据客户要求可做到500℃)、温度±1℃。发热管采用不锈钢发热管经久耐用,发热板采用CR12的耐热钢;

4、工作区域采用全密封并配有双层钢化玻璃观察窗,内层用304镜面不锈钢、外层用冷轧板烤漆、中间用高温玻璃棉隔热确保外罩表面温度在40度范围内;

5、电控部分采用PLC+触摸屏控制,同时配有压力传感器、位移传感器及温控器可显示的压力、位移、温度等参数;

6、出压力范围可进行调整,同时也可根据位移的变化调整所需要的压力即可实现多段不同压力、位移、温度的热压模式。

碳纤维模压成型机,复合碳纤维材料层压成型工艺,将逐层铺叠的预浸料放置于上下平板模之间加压加温固化,这种工艺可以直接继承木胶合板生产方法,并根据树脂的流变性能,进行改进与完善。

江苏伺服压力机在碳纤维热压成型工艺的作用

}

碳纤维领域初步形成研发与生产平台,朝高性能和低成本方向快速发展

碳纤维是一类碳元素含量在90%以上的无机纤维状材料,其中以聚丙烯腈(PAN)纤维为前驱体制备得到的聚丙烯腈基碳纤维最为重要,其制备工艺主要包括丙烯腈(AN)聚合物溶液制备、PAN原丝制备、PAN纤维预氧化、PAN预氧纤维碳化以及为与树脂复合所进行的表面处理,若制备高模量碳纤维还需经过高温石墨化工艺。PAN基碳纤维的生产制备流程,如图1所示。

图1 PAN基碳纤维生产制备流程

在国家科技和产业化示范计划的支持下,经过10余年的协同攻关,我国高性能碳纤维制备与应用技术取得了重大突破。

(1)初步建立高性能碳纤维技术与产品体系,技术水平不断提升

目前,我国国产碳纤维已初步实现T300级和T700级碳纤维的产业化规模生产。具体来看,T300级碳纤维性能基本达到国际水平,在国防领域应用渐趋成熟,在民用领域的应用仍有待开拓;T700级、T800级高性能碳纤维突破了干喷湿纺工艺,实现了产业化生产;创新性开发了湿法纺丝T700级碳纤维制备工艺,相关产品已应用于航空领域;在实验室条件下,T1100级高性能碳纤维已经突破关键制备技术。在高模量及高强高模碳纤维领域,M40级高模量碳纤维实现了小批量生产,产能约为300kg/a,并在多个卫星型号上应用;M40J级高强高模碳纤维已完成工程化研制,正在进行应用考核;M55J级高强高模碳纤维尚处于工程化研制阶段,更高性能的碳纤维品种仍处在关键技术研发阶段。

(2)已建立一批碳纤维生产企业和研发平台,国产碳纤维产业格局基本形成

在碳纤维生产企业方面,我国现有20多家碳纤维企业,主要分布在山东、江苏、河北和吉林,国产碳纤维的产业格局基本形成。以威海拓展纤维有限公司、江苏恒神股份有限公司、中复神鹰碳纤维有限责任公司、中安信科技有限公司、吉林精功碳纤维有限公司、中国石化上海石油化工股份有限公司为代表的6家企业建设起10条以上的单线产能达千吨级的生产线,另有18家企业建设了几十吨至几百吨产能的生产线;同时,腈纶工业基础的高强型大丝束碳纤维原丝技术取得突破,吉林碳谷碳纤维有限公司建成产能为1.5×104t/a的原丝生产线。2019年国内碳纤维理论产能达到2.6×104t/a,有效产能约为1.5×104t/a,生产的T300/T700级碳纤维基本满足国防领域的应用需求。碳纤维产业的产能虽不断增长,但存在产能大、产量小、开工率不足等问题。

在平台建设方面,我国已建设诸多碳纤维科学技术研究单位以支撑碳纤维产业的国产化发展,即1个国家碳纤维工程技术研究中心、2个碳纤维制备技术国家工程实验室、2个碳纤维复合材料国家工程实验室、多个国家重点实验室。

我国复合材料制造及应用水平发展显著

1.复合材料技术进入成熟期,开始较大规模应用

①在航空领域,复合材料的应用水平得到提升,用量占比越来越高,如我国第四代战斗机的复合材料用量占比为25%,大型运输机复合材料用量占比为15%,某型直升机复合材料用量占比为34%。另外,我国正在研发阶段的大型客机计划在尾翼、机翼等结构中使用碳纤维复合材料,复合材料用量将占其结构重量的15%~25%。②在航天领域,随着树脂基体性能的不断提高和先进工艺技术的逐步应用,我国航天结构中复合材料的应用趋势由小尺寸次承力结构到大尺寸主承力结构方向发展。③在兵器行业弹箭武器上,主要使用玻璃纤维、碳纤维增强复合材料等,其应用范围由非承力和次承力结构件发展到主承力结构件,如抗高过载的高内压火箭发动机壳体、大口径穿甲弹弹托等。据不完全统计,兵器行业玻璃纤维的年用量已达到上千吨,碳纤维、芳纶纤维、聚乙烯纤维的年用量已分别达到50t、70t、10t以上。④在民用领域,风力发电和汽车方面的复合材料应用为碳纤维复合材料产业注入新的活力,热塑性复合材料在轨道交通和汽车产业领域应用前景广阔。

2.复合材料自动化制造技术日趋成熟

随着高性能复合材料的广泛应用,复合材料制造工艺朝多元化、自动化方向快速发展,复合材料成型工艺从2~3种(手糊和手工铺贴)发展到近10种(自动铺放),2016年复合材料构件自动化制造的比例达到50%,2020年年底将达到65%以上。

“十二五”期间,我国复合材料自动化制造技术得到较好发展,自动铺带、自动铺丝以及预浸料自动拉挤等先进高效的工艺技术正逐步投入应用,发展了热熔预浸料生产和热压罐复合材料成型工艺技术、纤维/布带缠绕成型技术、树脂传递模塑料成型工艺(RTM)成型技术和复合材料结构整体成型技术,复合材料制造技术体系初步形成,可用于研制和小批量生产碳纤维、玻璃纤维和芳纶增强高性能酚醛树脂、环氧树脂、双马来酰亚胺树脂和聚酰亚胺等多种复合材料,主要应用于汽车零部件、轨道交通、通信电力、建筑建材、电力/电器、市政基础设施、新能源开发等领域,基本满足了航空、航天、兵器、能源和交通运输领域的需求。

3.结构功能一体化复合材料技术朝高端化、实用化方向快速发展,支撑了高端装备的研制和生产

我国结构功能一体化复合材料技术发展显著,结构吸波和透波复合材料在新型飞机、导弹、舰船、地面车辆等领域得到大量应用。结构装甲复合材料兼具抗弹防护和结构承载功能,第一代的抗弹/结构复合材料——高强玻璃纤维增强树脂基复合材料,性能已达到美国MIL-46197A结构装甲复合材料标准,已用于多种装甲装备的舱门舱盖。第二代的抗弹/结构复合材料具备抗弹、承载、隐身等多功能一体化的特点,在保持较高刚强度和抗弹性能的情况下,在较宽雷达波段吸波效果突出,已用于坦克大型动力舱顶盖和外露部件。我国树脂基防热复合材料在载人航天和星空探测等发展计划的推动下,研制出蜂窝增强低密度树脂基防热复合材料并在载人返回舱上实现成功应用。

高性能碳纤维复合材料是复合材料产业的核心,2016年世界碳纤维复合材料年用量约为1.1×105t,市场总价值约为200亿美元,市场发展前景广阔。我国复合材料经过30多年的发展,已建立起一批复合材料构件研发平台和制造基地,以促进复合材料技术及产业水平的提升。

高性能高分子复合材料发展面临的问题

目前,我国以碳纤维增强复合材料为代表的高性能高分子复合材料尚处于发展阶段,与国外先进水平相比,仍有较大差距。我国相关产品研发和产业发展方向多是对标国外已有产品,以跟踪仿制为主,产品的进口依赖程度较高,产业化进程缓慢,部分领域严重滞后于世界材料强国的发展速度。

(一)碳纤维高端产品少,低端产品价格贵,对位芳纶发展艰难

我国高性能纤维各品种发展不均衡。对于高性能无机纤维来说,玻璃纤维进入产业化发展成熟期,产品质量好且市场占有率高;碳纤维处于产业化初期,产能不断提高,但产量及市场占有率较低,产品质量的稳定性还有待提高;芳纶纤维处于产业化初期,已具备一定的产能,但产量较低,产品质量稳定性和市场占有率还有待进一步提高。

国产碳纤维生产成本居高不下,用于航空、航天等领域的高性能碳纤维与国外存在代差,自主创新能力亟待加强。同时,我国碳纤维应用市场培育迟缓,风力发电、汽车等产业大规模应用尚未进行,工业需求的拉动力较弱。现有碳纤维企业的产品多集中于生产T300级碳纤维,存在一定的低水平无序扩张,再加上国外相关企业对我国中低档碳纤维进行价格打压,不利于碳纤维产业的成长,难以形成具有竞争力和可持续健康发展的产业。

在对位芳纶方面,国外企业不断通过价格手段对我国芳纶产品进行精准打压,致使国内企业使用国产芳纶产品的积极性不高。同时,国内芳纶生产企业还面临着国外加强对芳纶单体(对苯二甲酰氯)出口控制的挑战。总之,目前我国芳纶产业的成长与发展困难重重。

(二)树脂基材料的研发与应用水平存在差距

树脂基体是纤维增强复合材料中最薄弱、最先受到破坏的组分,对复合材料整体性能的发挥起着关键作用。我国在树脂基体方面存在的问题和差距主要表现为:①研发力量薄弱,研究主体以高校与科研院所为主,与企业开展复合材料的应用研究相对脱节;②高品质、高纯度的环氧树脂、酚醛树脂及改性高端产品规模化生产能力低;③针对高端领域的先进复合材料要求,树脂复配体系设计能力有待加强;④高性能树脂基体产业化能力不足,缺乏满足低频段、全向隐身、透波、低密度、防隔热、防弹等性能的产品。此外还需要加大新型超材料、频率选择、石墨烯等新技术、新材料在结构吸波和透波领域的应用力度。

(三)树脂基复合材料设计、制造与应用水平低

(1)我国复合材料的结构件设计以跟踪替代应用为主,自主设计应用能力较弱。目前,根据国外的实际应用统计,主承力结构使用T300级碳纤维复合材料的减重效率可达25%,而我国减重效率则相对较低,多数不到20%。

(2)国产复合材料自动化成型工艺的应用比例较低,总体不足20%,主要局限于航空和航天等高端领域,民用复合材料仍以传统的手糊或手工铺贴成型为主,与国外的自动化制造水平存在明显差距。工艺落后使复合材料性能离散大、成品率低、成本高,成为制约高性能复合材料发展的突出问题。

(3)复合材料制造关键装备技术水平薄弱,以进口引进为主、仿制为辅,部分装备如热熔预浸机、缠绕机、热压罐、热压机的设计制造以及复合材料自动铺放设备、预浸料自动拉挤设备的研制虽取得一定突破,但在科研和生产中对进口装备的依赖程度仍较高。

(4)高性能树脂基复合材料应用水平与发达国家先进水平存在明显差距。我国研制的ARJ21支线客机复合材料用量占比约为2%,正在研制的C919中型客机复合材料用量占比约为10%,而国外最新研制的波音787、空中客车A350等大型客机复合材料用量占比则达到50%以上。欧洲直升机公司的NH90直升机复合材料达到了95%,而国内新型直升机Z10的复合材料用量占比仅为34%。高性能树脂基复合材料在大型客机、风力发电和汽车等领域的大规模应用尚未破局,复合材料产业尚未形成规模。

(5)结构功能复合材料基础薄弱,技术发展缺乏综合设计能力。增强材料、树脂基体、功能填料等原材料的研究单位分散,低水平、同质化竞争严重,性能无法满足现有需求。新型超材料、频率选择、石墨烯等新技术、新材料在结构吸波和透波领域的应用取得一定进展,但仍然处于理论设计和试验验证阶段,离实际工程应用要求仍然存在差距。尽管我国在结构/吸波复合材料、结构/抗弹复合材料、结构/防热复合材料方面的研究取得明显进展,但结构功能复合材料的发展仍存在顶层设计欠缺、资源整合能力不够、重要领域空缺、跨学科综合设计能力不足和技术共享不充分、低水平重复等问题,尚未形成通用化、系列化、标准化的材料体系,缺少支撑未来技术发展的高性能产品。

我国高性能高分子复合材料的发展目标及建议

1.面向2025年的发展目标

面向2025年的发展目标为:完成国产碳纤维品种系列化、工艺多元化、产能规模化,高强、高强中模和高模高强碳纤维主要产品满足应用需求,具备产业竞争力;突破大规模一体化对位芳纶生产制备技术,建成万吨级生产线;建立基于高强中模碳纤维的第二代先进复合材料规模化制备与应用平台,实现在大飞机、载人航天等重大工程中的应用,并在武器装备方面得到全面替代应用,达到世界先进水平。

重点发展方向包括:①加强国产碳纤维高性能、低成本制备技术研发,突破T1100级别碳纤维的国产化技术,开展M55J级高模高强碳纤维稳定工程化技术研究以及M65J级碳纤维制备关键技术研究,产品实现国防型号应用。突破具有高强高模高韧高延伸、压缩与拉伸性能均衡发展特征的国产碳纤维制备技术;开展千吨级及以上规模的T300、T700和T800级碳纤维低成本产业化制备技术研究,开展高速干喷湿纺纺丝工艺系统技术集成研究;突破48K以上大丝束碳纤维批量生产关键技术。②突破大规模一体化对位芳纶生产制备技术,建成万吨级生产线。③开展碳纤维复合材料设计与在航空和航天等领域的应用技术研究,包括与国产T800级碳纤维匹配的高韧性预浸料用树脂设计改进及规模化合成技术,RTM树脂配方设计及规模化合成技术,国产高强中模碳纤维预浸料质量与性能一致性控制技术,RTM复合材料增韧技术,复合材料快节拍制造技术研究,国产高强中模碳纤维复合材料适航验证技术等。④开展高强高模高韧且拉压平衡碳纤维增强树脂基复合材料技术研究,研发以全面替代高性能铝合金为目标的第三代先进复合材料。⑤实现国产低成本高性能高分子复合材料在建筑、风电叶片、输电缆线、汽车和轨道交通等领域的应用。

2.面向2035年的发展目标

面向2035年的发展目标为:通过自主创新,建立满足我国应用需求的高性能增强体纤维技术与产品系列,形成国防用国产高性能纤维及其复合材料的持续自主保障能力。研发出国家优势产业、战略产业以及新型武器装备所必需的新型高性能纤维复合材料,通过使用环境下的规模化验证,提高产品的性能和市场竞争力。实现国产高性能高分子复合材料产业化及推广应用,使我国复合材料技术达到世界同步发展水平并逐步实现全面超越和引领国际发展水平。

重点发展方向包括:①实现M55J、M65J、T1100等级别的高性能碳纤维的工程化制备,满足国防军工与国民经济发展需求。②根据实际服役环境对材料性能的需求,实现高性能新型树脂基体的结构设计及高分子复合材料超微界面控制,实现复合材料快速成型新方法、超大尺寸复合材料一体化成型等新型技术的开发。③建立起国产高分子复合材料产业技术创新体系,满足国防及国民经济重大领域的需求。

}

我要回帖

更多关于 碳纤维缠绕机 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信