Q2 以下变频器没有高频机种的是?

高频电子线路习题集第一章 绪论11 画出无线通信收发信机的原理框图,并说出各部分的功用。答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。12 无线通信为什么要用高频信号?“高频”信号指的是什么? 答: 高频信号指的是适合天线发射、传播和接收的射频信号。 采用高频信号的原因主要是:(1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。13 无线通信为什么要进行凋制?如何进行调制? 答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的信号是高频信号,所以也提高了信道利用率,实现了信道复用。 调制方式有模拟调调制和数字调制。在模拟调制中,用调制信号去控制高频载波的某个参数。在调幅方式中,AM普通调幅、抑制载波的双边带调幅(DSB)、单边带调幅(SSB)、残留单边带调幅(VSSB);在调频方式中,有调频(FM)和调相(PM)。 在数字调制中,一般有频率键控(FSK)、幅度键控(ASK)、相位键控(PSK)等调制方法。14 无线电信号的频段或波段是如何划分的?各个频段的传播特性和应用情况如何?答: 无线电信号的频段或波段的划分和各个频段的传播特性和应用情况如下表第二章 高频电路基础21对于收音机的中频放大器,其中心频率f0=465 kHzB0.707=8kHz,回路电容C=200pF,试计算回路电感和 QL值。若电感线圈的 QO=100,问在回路上应并联多大的电阻才能满足要求。 解2-1:答:回路电感为0.586mH,有载品质因数为58.125,这时需要并联236.66k的电阻。22 图示为波段内调谐用的并联振荡回路,可变电容 C的变化范围为 12260 pF,Ct为微调电容,要求此回路的调谐范围为 5351605 kHz,求回路电感L和Ct的值,并要求C的最大和最小值与波段的最低和最高频率对应。题22图答:电容Ct为19pF,电感L为0.3175mH.23 图示为一电容抽头的并联振荡回路。谐振频率f0=1MHz,C1=400 pf,C2=100 pF 求回路电感L。若 Q0=100,RL=2k,求回路有载 QL值。 题23图解2-3答:回路电感为0.317mH,有载品质因数为1.54624 石英晶体有何特点?为什么用它制作的振荡器的频率稳定度较高? 答2-4:石英晶体有以下几个特点1. 晶体的谐振频率只与晶片的材料、尺寸、切割方式、几何形状等有关,温度系数非常小,因此受外界温度影响很小2. 具有很高的品质因数3. 具有非常小的接入系数,因此手外部电路的影响很小。4. 在工作频率附近有很大的等效电感,阻抗变化率大,因此谐振阻抗很大5. 构成震荡器非常方便,而且由于上述特点,会使频率非常稳定。25 一个5kHz的基频石英晶体谐振器, Cq=2.4X102pF C0=6pF,ro=15。求此谐振器的Q值和串、并联谐振频率。 解2-5:答:该晶体的串联和并联频率近似相等,为5kHz,Q值为。26 电阻热噪声有何特性?如何描述 答2-6:电阻的热噪音是由于温度原因使电阻中的自由电子做不规则的热运动而带来的,因此热噪音具有起伏性质,而且它具有均匀的功率谱密度,所以也是白噪音,噪音的均方值与电阻的阻值和温度成正比。27 求如图所示并联电路的等效噪声带宽和输出均方噪声电压值。设电阻R=10k,C=200 pF,T=290 K。 题27图解2-7:答:电路的等效噪声带宽为125kHz,和输出均方噪声电压值为19.865V2.28 如图所示噪声产生电路,已知直流电压 E=10 V,R=20 k,C=100 pF,求等效噪声带宽B和输出噪声电压均方值(图中二极管V为硅管)。 题28图解2-8:此题中主要噪音来自二极管的散粒噪音,因此等效噪音带宽为:29 求图示的T型和 型电阻网络的噪声系数。题29图解2-9设两个电路的电源内阻为Rs 1. 解T型网络(1)采用额定功率法(2)采用开路电压法(3)采用短路电流法2.解型网络(1)采用额定功率法(2)采用开路电压法(3)采用短路电流法210 接收机等效噪声带宽近似为信号带宽,约 10kHz,输出信噪比为 12 dB,要求接收机的灵敏度为 1PW,问接收机的噪声系数应为多大?解2-10:根据已知条件答:接收机的噪音系数应为32dB。第三章 高频谐振放大器31 对高频小信号放大器的主要要求是什么?高频小信号放大器有哪些分类?答3-1:对高频小信号器的主要要求是:1. 比较高的增益2. 比较好的通频带和选择性3. 噪音系数要小4. 稳定性要高高频小信号放大器一般可分为用分立元件构成的放大器、集成放大器和选频电路组成的放大器。根据选频电路的不同,又可分为单调谐回路放大器和双调谐回路放大器;或用集中参数滤波器构成选频电路。32 (1)回路有载品质因数 QL和 3 dB带宽 B0.7;(2)放大器的电压增益;(3) 中和电容值。(设Cbc=3 pF)题31图解3-2:根据已知条件可知,能够忽略中和电容和yre的影响。得:答:品质因数QL为40.4,带宽为11.51kHz,谐振时的电压增益为30.88,中和电容值为1.615pF33 高频谐振放大器中,造成工作不稳定的王要因素是什么?它有哪些不良影响?为使放大器稳定工作,可以采取哪些措施? 答3-3 集电结电容是主要引起不稳定的因素,它的反馈可能会是放大器自激振荡;环境温度的改变会使晶体管参数发生变化,如Coe、Cie、gie、goe、yfe、引起频率和增益的不稳定。负载阻抗过大,增益过高也容易引起自激振荡。一般采取提高稳定性的措施为:(1)采用外电路补偿的办法如采用中和法或失配法(2)减小负载电阻,适当降低放大器的增益(3)选用fT比较高的晶体管(4)选用温度特性比较好的晶体管,或通过电路和其他措施,达到温度的自动补偿。34 三级单调谐中频放大器,中心频率f0=465 kHz,若要求总的带宽 B0.7=8 kHZ,求每一级回路的 3 dB带宽和回路有载品质因数QL值。 解34:设每级带宽为B1,则:答:每级带宽为15.7kHz,有载品质因数为29.6。35 若采用三级临界耦合双回路谐振放大器作中频放大器(三个双回路),中心频率为fo=465 kHz,当要求 3 dB带宽为 8 kHz时,每级放大器的3 dB带宽有多大?当偏离中心频率 10 kHZ时,电压放大倍数与中心频率时相比,下降了多少分贝? 解3-5设每级带宽为B1,则:答:每级放大器的3 dB带宽为11.2kHz,当偏离中心频率 10 kHZ时,电压放大倍数与中心频率时相比,下降了多少31.4dB36 集中选频放大器和谐振式放大器相比,有什么优点?设计集中选频放大器时,主要任务是什么? 答3-6优点: 选频特性好、中心频率稳定、Q值高、体积小、调整方便。设计时应考虑: 滤波器与宽带放大器及其负载之间的匹配。另外还要考虑补偿某些集中参数滤波器的信号衰减。37 什么叫做高频功率放大器?它的功用是什么?应对它提出哪些主要要求?为什么高频功放一般在B类、C类状态下工作?为什么通常采用谐振回路作负载? 答3-7 高频功率放大器是一种能将直流电源的能量转换为高频信号能量的放大电路,其主要功能是放大放大高频信号功率,具有比较高的输出功率和效率。对它的基本要求是有选频作用、输出功率大、自身损耗小、效率高、所以为了提高效率,一般选择在B或C类下工作,但此时的集电极电流是一个余弦脉冲,因此必须用谐振电路做负载,才能得到所需频率的正弦高频信号。38 高频功放的欠压、临界、过压状态是如何区分的?各有什么特点?当EC、Eb、Ub、RL四个外界因素只变化其中的一个时,高频功放的工作状态如何变化? 答3-8当晶体管工作在线性区时的工作状态叫欠压状态,此时集电极电流随激励而改变,电压利用率相对较低。如果激励不变,则集电极电流基本不变,通过改变负载电阻可以改变输出电压的大,输出功率随之改变;该状态输出功率和效率都比较低。当晶体管工作在饱和区时的工作状态叫过压状态,此时集电极电流脉冲出现平顶凹陷,输出电压基本不发生变化,电压利用率较高。过压和欠压状态分界点,及晶体管临界饱和时,叫临界状态。此时的输出功率和效率都比较高。当单独改变RL时,随着RL的增大,工作状态的变化是从欠压逐步变化到过压状态。当单独改变EC时,随着EC的增大,工作状态的变化是从过压逐步变化到欠压状态。当单独改变Eb时,随着Eb的负向增大,工作状态的变化是从过压逐步变化到欠压状态。当单独改变Ub时,随着Ub的增大,工作状态的变化是从欠压逐步变化到过压状态。39 已知高频功放工作在过压状态,现欲将它调整到临界状态,可以改变哪些外界因素来实现,变化方向如何?在此过程中集电极输出功率如何变化? 答3-9 可以通过采取以下措施1. 减小激励Ub,集电极电流Ic1和电压振幅UC基本不变,输出功率和效率基本不变。2. 增大基极的负向偏置电压,集电极电流Ic1和电压振幅UC基本不变,输出功率和效率基本不变。3. 减小负载电阻RL,集电极电流Ic1增大,IC0也增大,但电压振幅UC减小不大,因此输出功率上升。4. 增大集电极电源电压,Ic1、IC0和UC增大,输出功率也随之增大,效率基本不变。310 高频功率放大器中提高集电极效率的主要意义是什么? 答3-10主要意义在于提高了电源的利用率,将直流功率的更多的转换为高频信号功率,减小晶体管的功率损耗,可降低对晶体管的最大允许功耗PCM的要求,提高安全可靠性。311 设一理想化的晶体管静特性如图所示,已知 Ec=24 V,Uc=21V,基极偏压为零偏,Ub=3 V,试作出它的动特性曲线。此功放工作在什么状态?并计算此功放的、P1、P0、及负载阻抗的大小。画出满足要求的基极回路。解3-111、求动态负载线 题311图 2、求解、P1、P0、及负载阻抗的大小。3、符合要求的基极回路为312 某高频功放工作在临界伏态,通角 =75o”,输出功率为 30 W,Ec=24 V,所用高频功率管的SC=1.67V,管子能安全工作。(1)计算此时的集电极效率和临界负载电阻; (2)若负载电阻、电源电压不变,要使输出功率不变。而提高工作效率,问应如何凋整? (3)输入信号的频率提高一倍,而保持其它条件不变,问功放的工作状态如何变化,功放的输出功率大约是多少? 解3-12(1)(2)可增加负向偏值,但同时增大激励电压,保证IC1不变,但这样可使导通角减小,效率增加。(3)由于频率增加一倍,谐振回路失谐,集电极阻抗变小,电路由原来的临界状态进入欠压状态,输出幅度下降,故使输出功率和效率都下降。对于2的频率,回路阻抗为:因此,输出功率下降到原来的2/3Q倍。313 试回答下列问题: (1)利用功放进行振幅调制时,当调制的音频信号加在基极 或集电 极时、应如何选择功放的工作状态? (2)利用功放放大振幅调制信号时,应如何选择功放的工作状态?。 (3)利用功放放大等幅度的信号时,应如何选择功放的工作状态? 解3-13(1)利用功放进行振幅调制时,当调制的音频信号加在基极或集电极时、功放应选在过压状态。 (2)利用功放放大振幅调制信号时,功放应选在欠压状态,并为乙类工作。 (3) 利用功放放大等幅度的信号时,功放应选在过压状态,此时有较大的输出功率和效率。 也可以选择在过压状态,此时输出电压幅度比较稳定。314 当工作频率提高后,高频功放通常出现增益下降,最大输出功率和集电极效率降低,这是由哪些因素引起的? 解3-14主要原因是1. 放大器本身参数,如、随频率下降。2. 电路失谐,集电极阻抗减小。3. 少数载流子渡越时间效应。4. 非线性电抗效应,如CbC 的影响。5. 发射极引线电感的影响,对高频反馈加深。315 如图所示,设晶体管工作在小信号A类状态,晶体管的输入阻抗为Z,交流电流放大倍数为hfe/(1+j/f/f),试求Le而引起的放大器输入阻抗Zi。并以此解释晶体管发射极引线电感的影响。解3-15可见,Le越大,输入阻抗越大,反馈越深,电流越小,反馈越深,输出功率和效率越低。316 改正图示线路中的错误,不得改变馈电形式,重新画出正确的线路。题316图解3-16:317 试画出一高频功率放大器的实际线路。要求(1)采用NPN型晶体管,发射极直接接地;(2)集电极用并联馈电,与振荡回路抽头连接;(3)基极用串联馈电,自偏压,与前级互感耦合。 解3-17:根据要求画出的高频功率放大器电路如下318 一高频功放以抽头并联回路作负载,振荡回路用可变电容调谐。工作频率f=5 MHZ,调谐时电容 C=200 pF,回路有载品质因数QL=20,放大器要求的最佳负载阻抗RLr=50 ,试计算回路电感L和接入系数 P。 解3-18:319 如图(a)所示的D型网络,两端的匹配阻抗分别为RP1、RP2。将它分为两个L型网络,根据L型网络的计算公式,当给定Q2=RP2/XP2时,证明下列公式:并证明回路总品质因数Q=Q1Q2。题319图解3-19首先将电路分解成两个L回路,如图(1)。然后利用并串转换,将Xp2和Rp2的并联转换为Rs和Xs3的串联,得到图(2)。根据串并转换关系,得:再利用串并转换,将Xs1和Rs的并联转换为Rp和Xp的并联,得到图(4),其中320 上题中设RP1=20,Rp2=100,F=30MHz,指定Q2=5,试计算Ls、CP1、CP2和回路总品质因数Q。 解3-20321 如图示互感耦合输出回路,两回路都谐振,由天线表 IA测得的天线功率PA=10 W,已知天线回路效率 2=0 .8。中介回路的无载品质因数 QO=100,要求有载品质因数QL=10,工作于临界状态。问晶体管输出功率P1为多少?设在工作频率L1=50,试计算初级的反映电阻rf,和互感抗M。当天线开路时,放大器工作在什么状态?题321 图当天线开路时,反射电阻为零,初级回路等效并联阻抗增大,放大器将从临界状态进入过压状态。322 什么是D类功率放大器,为什么它的集电极效率高?什么是电流开关型和电压开关型D类放大器? 答3-22D类放大器是一种工作在开关状态的功率放大器,两个晶体管在输入激励控制下交替饱和导通或截止,饱和导通时,有电流流过,但饱和压降很低;截止时,流过晶体管的电流为零。所以晶体管的平均功耗很小,效率很高。在电流开关型电路中,两管推挽工作,电源通过一个大大电感供给一个恒定电流,分别交替流过两个晶体管,两管轮流导通和截止。通过谐振电路得到正弦输出电压。在电压开关型电路中,两晶体管是与电源电压和地电位串联的,在输入控制下,一个导通,一个截止,因此,两管的中间点电压在0和电源电压之间交替切换。通过谐振电路,获的正弦输出信号。323 图333的电压开关型D类放大器,负载电阻为RL,若考虑晶体管导通至饱和时,集电极饱和电阻Rcs(Rcs=1/Sc),试从物理概念推导此时开关放大器的效率。 解3-23根据题意,将(a)图简化为(b)图所示的等效电路。设Rcs1=Rcs2=Rcs,LC回路对开关频率谐振,则:324 根据图337的反相功率合成器线路,说明各变压器和传输线变压器所完成的功用,标出从晶体管输出端至负载间各处的阻抗值。设两管正常工作时,负载电阻上的功率为 100 W,若某管因性能变化,输出功率下降一半,根据合成器原理,问负载上的功率下降多少瓦? 解324:不平衡-平衡转换反相分配平衡-不平衡转换1:4阻抗变换反相合成阻抗变换100 W反相功率合成器的实际线路当某管上的功率下降一半时,证明该管上的输出电压降低,其值是原来的0.707倍。那么最后流过合成器负载的电流325 射频摸块放大器的最基本形式是什么样的电路?它可以完成哪些功能?它有哪些王要优点答3-25射频模块放大器的最基本的形式是一个采用混合电路技术的薄膜混合电路,是把固态元件和无源元件(包括分立元件和集成元件)外接在一块介质衬底上,并将有源和无源元件以及互连做成一个整体。用这种放大器可以构成振荡器、调制器、混频器、功率合成与分配期、环行器、定向耦合器;采用多个模块可构成一个射频系统。采用射频模块的主要优点是电路性能好、可靠性高、尺寸小、重量轻、散热好、损耗低、价格便宜等。第四章 正弦波振荡器41 什么是振荡器的起振条件、平衡条件和稳定条件?振荡器输出信号的振幅和频率分别是由什么条件决定? 答4-142 试从相位条件出发,判断图示交流等效电路中,哪些可能振荡,哪些不可能振荡。能振荡的属于哪种类型振荡器?题4-2图答4-2(a) 可能振荡,电感三点式反馈振荡器,(b) 不能,(c) 不能,(d) 不能,(e) 试分析上述四种情况是否都能振荡,振荡频率f1与回路谐振频率有何关系?题4-3图解4-3根据给定条件,可知(1)fo1f02f03,因此,当满足fo1f02ff02f03,因此,当满足fo1f02ff03,就可能振荡,此时L1C1回路和L2C2回路呈感性,而L3C3回路呈容性,构成一个电感反馈振荡器。(3)fo1=f02f03, 因此,当满足fo1=f02ff02=f03不能振荡,因为在任何频率下,L3C3回路和L2C2回路都呈相同性质,不可能满足相位条件。44 试检查图示的振荡器线路,有哪些错误?并加以改正。题4-4图解4-4 改正过的电路图如下45 将图示的几个互感耦合振荡器交流通路改画为实际线路,并注明互感的同名端。题4-5图解4-5, 画出的实际电路如下46 振荡器交流等效电路如图所示,工作频室为10 MHZ,(1)计算C1、C2取值范围。(2)画出实际电路。题4-6解4-6(1)因为(2)实际电路如下47 在图示的三端式振荡电路中,已知 L=1.3H,C1=51pF,C2=2000pF,Q0=100,RL=1k,Re=500试问IEQ应满足什么要求时振荡器才能振荡? 解4-748 在图示的电容三端式电路中,试求电路振荡频率和维持振荡所必须的最小电压增益。解4-8题4-8图4-9 图示是一电容反馈振荡器的实际电路,已知C1=50 pF,C2=100 pF,C3= 10260pF,要求工作在波段范围,即f=101OMHz,试计算回路电感L和电容C。设回路无载Q。=100,负载电阻R=1k,晶体管输入电阻Ri=500若要求起振时环路增益K。KF=3,问要求的跨gs。和静态工作电流 IcQ必须多大?题4-9图解4-9410 对于图示的各振荡电路;(1)画出交流等效电路,说明振荡器类型;(2)估算振荡频率和反馈系数。 题4-10图解4-10(1)交流等效图如下(a)是一个西勒振荡器,当忽略15pF的电容后,是一个电容三点式反馈振荡器;(b)是一个电容三点式反馈振荡器(2)对于(b)电路答:该电路的振荡频率可在2.285MHz到2.826MHz范围内调节。因此,该电路的的反馈系数随着振荡频率的调节也发生改变,近似值为0.9。411 克拉泼和西勒振荡线路是怎样改进了电容反馈振荡器性能的?答4-11由于克拉波振荡器在回路中串行接入了一个小电容,使的晶体管的接入系数很小,耦合变弱,因此,晶体管本身的参数对回路的影响大幅度减小了,故使频率稳定度提高,但使的频率的调整范围变小,所以,西勒振荡器是在克拉波振荡器的基础上,在回路两端在并联一个可调电容,来增大频率调节范围。由于存在外接负载,当接入系数变小时,会带来增益的下降。412 振荡器的频率稳定度用什么来衡量?什么是长期、短期和瞬时稳定度?引起振荡器频率变化的外界因素有哪些? 答4-12振荡器的稳定度是用在一定的时间间隔内,振荡频率的相对变化量大小来衡量的。长期稳定度:一般是指一天以上时间内的稳定度。短期稳定度:一天或小于一天时间内,如小时、分、或秒 计时间隔的频率稳定度瞬时稳定度:秒或毫秒时间间隔内的频率的相对变化。413 在题48图所示的电容反馈振荡器中,设晶体管极间电容的变化量为Cce=Cbe=1pF,试计算因极间电容产生的频率相对变化1/1 解4-13414 泛音晶体振荡器和基频晶体振荡器有什么区别?在什么场合下应选用泛音晶体振荡器?为什么?答4-14所谓泛音,就是石英晶体振动的机械谐波,位于基频的奇数倍附近,且两者不能同时存在。在振荡器电路中,如果要振荡在某个泛音频率上,那么就必须设法抑制基频和其他泛音频率。而因为石英晶体的带宽很窄,所以在基频振荡时,肯定会抑制泛音频率。当需要获得较高的工作频率时,如果不想使用倍频电路,则可采用泛音振荡器直接产生较高的频率信号。 415 图示是两个实用的晶体振荡器线路,试画出它们的交流等效电路,并指出是哪一种振荡器,晶体在电路中的作用分别是什么?题4-15图解4-15交流等效电路如下图(a)电路是一个并联晶体振荡器,晶体在电路中相当于一等效的大电感,使电路构成电容反馈振荡器。图(B)电路是一个串联晶体振荡器,晶体在电路中在晶体串联频率处等效一个低阻通道,使放大器形成正反馈,满足相位条件,形成振荡。416 试画出一符合下列各项要求的晶体振荡器实际线路; (1)采用NPN高频三极管; (2)采用泛音晶体的皮尔斯振荡电路; (3)发射极接地,集电极接振荡回路避免基频振荡。 解4-16所设计的电路如下417将振荡器的输出送到一倍频电路中,则倍频输出信号的频率稳定度会发主怎样的变化?并说明原因。 解4-17 如果将振荡器的频率为f1的输出信号送入一n倍频器,则倍频器输出信号频率为n f1。但由于倍频器是对输入频率倍频,所以如果倍频器本身是稳定的,则它的频率稳定度不会发生改变。因为倍频器输出信号的稳定度为:但实际上倍频器电路同样也存在着不稳定因素,所以实际上,振荡器信号经倍频后的信号频率稳定度将会降低。418 在高稳定晶体振荡器中,采用了哪些措施来提高频率稳定度?答4-18采用温度系数低的晶体切片。保证晶体和电路在恒定温度环境下工作,如采用恒温槽或温度补偿电路。选择高稳定性的电源。选择温度特性好的电路器件。第五章 频谱的线性搬移电路5l 一非线性器件的伏安特性为:试写出电流i中组合频率分量的频率通式,说明它们是由哪些乘积项产生的,并求出其中的1、21+2、1+2-3频率分量的振幅。 解5-1那么,频率分量的频率通式可表示为从上面可以看出:直流分量是由i的表达式中的常数项和2次项产生各频率的基频分量是由i的表达式中的1次和3次项产生各频率的3次谐波分量和组合系数之和等于3的组合频率分量是由i的表达式中的3次项产生52 若非线性器件的伏安特性幂级数表示i=a0+a1u+a2u2 ,式中a0、a1、+a2是不为零的常数,信号u是频率为150 kHz和200 二极管平衡电路如图所示,u1及u2的注入位置如图所示,图中,u1=U1COS1t,u2=U2COS2t且U2U1.求u0(t)的表示式,并与图57所示电路的输出相比较。解5-4设变压器变比为1:1,二极管伏安特性为通过原点的理想特性,忽略负载的影响,则每个二极管的两端电压为:当假设负载电阻RL时这个结果和把u1、u2换位输入的结果相比较,输出电压中少了1的基频分量,而多了2的基频分量,同时其他组合频率分量的振幅提高了一倍。55 图示为二极管平衡电路,u1=U1COS1t,u2=U2COS2t, 且U2U1。试分析RL上的电压或流过RL的电流频谱分量,并与图57所示电路的输出相比较。 解5-5设变压器变比为1:1,二极管伏安特性为通过原点的理想特性,忽略负载的影响,则每个二极管的两端电压为:和把这个结果与u1、u2换位输入的结果相比较,输出电压中少了1的基频分量,而多了直流分量和2的偶次谐波分量。 56 试推导出图517(下图)所示单差分对电路单端输出时的输出电压表示式(从V2集电极输出)。 题5-6图解5-6当谐振回路对1谐振时,设谐振阻抗为RL,且12,则:57 试推导出图518所示双差分电路单端输出时的输出电压表示式。 题5-7图解5-758 在图示电路中,晶体三极管的转移特性为题5-8图若回路的谐振阻抗为R。试写出下列三种情况下输出电压u。的表示式。 (1)u1=U1COS1t (2)考虑输出电压的反作用,求输出电压u。的表示式,并与(1)的结果相比较。题5-10图解5-10第六章 振幅调制、解调及混频61 已知载波电压uc=UCsinCt,调制信号如图所示,fC1/T。分别画出m=0.5及m=1两种情况下所对应的AM波波形以及DSB波波形。题6-1图解6-1,各波形图如下62 某发射机输出级在负载RL=100上的输出信号为u0(t)=4(1+0.5cost)cosct V。求总的输出功率Pav、载波功率Pc和边频功率P边频。解6-2显然,该信号是个AM调幅信号,且m=0.5,因此63 试用相乘器、相加器、滤波器组成产生下列信号的框图(1)AM波;(2) DSB信号;(3)SSB信号。 解6-3X+X滤波器XX64 在图示的各电路中,调制信号u(t)=U cost,载波电压uC=UCcosct,且c,UCU,二极管VD1和VD2的伏安特性相同,均为从原点出发,斜率为gD的直线。(1)试问哪些电路能实现双边带调制?(2)在能够实现双边带调制的电路中,试分析其输出电流的频率分量。 题6-4图解6-4所以,(b)和(c)能实现DSB调幅而且在(b)中,包含了c的奇次谐波与的和频与差频分量,以及c的偶次谐波分量。在(c)中,包含了c的奇次谐波与的和频与差频分量,以及c的基频分量。65试分析图示调制器。图中,Cb对载波短路,对音频开路; uC=UCcosct, u=Ucost(1)设UC及U均较小,二极管特性近似为i=a0+a1u2+a2u2.求 输出uo(t)中含有哪些频率分量(忽略负载反作用)? (2)如UCU,二极管工作于开关状态,试求uo(t)的表示式。 (要求:首先,忽略负载反作用时的情况,并将结果与(1)比较;然后,分析考虑负载反作用时的输出电压。)题6-5图解6-5(1)设二极管的正向导通方向为他的电压和电流的正方向,则:(2)在考虑负载的反作用时与不考虑负载的反作用时相比,出现的频率分量相同,但每个分量的振幅降低了。66 调制电路如图所示。载波电压控制二极管的通断。试分析其工作原理并画出输出电压波形;说明R的作用(设T=13TC, 、T分别为载波及调制信号的周期)。题6-6图解6-6设二极管为过原点的理想二极管,跨导为gD,,变压器变比为1:1.。电阻R可看作两个电阻的串联R=R1+R2则:当在uc的正半周,二极管都导通,导通电阻RD和R1、R2构成一个电桥,二极管中间连点电压为零,初级线圈中有电流流过,且初级电压为u。当在uc的负半半周,二极管都截止,变压器初级下端断开,初级线圈中电流为零。下图是该电路的等效电路图。因此在uc的正半周,次级获的电压为:通过次级谐振回路,选出所需要的频率。输出电压的只包含C频率分量在图中R的作用是用来调整两个二极管的一致性,以保证在二极管导通是电桥平衡,使变压器下端为地电位。67 在图示桥式调制电路中,各二极管的特性一致,均为自原点出发、斜率为gD的直线,并工作在受u2控制的开关状态。若设RLRD(RD=1/gD),试分析电路分别工作在振幅调制和混频时u1、u2各应为什么信号,并写出uo的表示式。 解6-7当u2的正半周,二极管全部导通,电桥平衡,输出为零。当u2的负半周,二极管全部截止,输出为电阻分压。所以输出电压为:当做AM调制时,u1应为载波信号,u2应为调制信号.当做DSB调制时,u1应为调制信号,u2应为载波信号.当做混频器时,u1应为输入信号,u2应为本振信号68 在图(a)所示的二极管环形振幅调制电路中,调制信号u=Ucost,四只二极管的伏安特性完全一致,均为从原点出发,斜率为gd的直线,载波电压幅值为UC,重复周期为TC=2/C的对称方波,且UCU,如图(b)所示。试求输出电压的波形及相应的频谱。题6-8图解6-869 差分对调制器电路如图所示。设:(1)若C=107rad/S,并联谐振回路对C谐振,谐振电阻RL=5k, Ee=Ec=10V,Re=5k, uC=156cosCt mV, u=5.63cos104t V。 试求uo(t)。 (2)此电路能否得到双边带信号?为什么?题6-9图解6-9(1)(2) 该电路不能产生DSB信号,因为调制信号加在了线性通道,无法抑制载波分量。要想产生DSB信号,调制信号应该加在非线性通道,且信号幅度比较小(小于26Mv)。610 调制电路如图所示。已知u=cos103t V ,uC=50cos107tmV。试求:(1)uo(t)表示式及波形;(2)调制系数m。题6-10图解6-10可见,由uC引起的时变电流分量是一个AM信号,而且调制深度m=0.5.输出电压为611 图示为斩波放大器模型,试画出A、B、C、D各点电压波形。题6-11图解6-11各点波形如下612 振幅检波器必须有哪几个组成部分?各部分作用如何?下列各图(见图所示)能否检波?图中R、C为正常值,二极管为折线特性。题6-12图解6-12 振幅检波器应该由检波二极管,RC低通滤波器组成,RC电路的作用是作为检波器的负载,在其两端产生调制电压信号,滤掉高频分量;二极管的作用是利用它的单向导电性,保证在输入信号的峰值附近导通,使输出跟随输入包络的变化。(a)不能作为实际的检波器,因为负载为无穷大,输出近似为直流,不反映AM输入信号包络。它只能用做对等幅信号的检波,即整流滤波。(b)不能检波,因为没有检波电容,输出为输入信号的正半周,因此是个单向整流电路。(c)可以检波(d)不可以检波,该电路是一个高通滤波器,输出与输入几乎完全相同。613 检波电路如图所示,uS为已调波(大信号)。根据图示极性,画出RC两端、Cg两端、Rg两端、二极管两端的电压波形。题6-13图解6-13 各点波形如右图614检波电路如图所示,其中us=0.8(1+0.5cost)cosCtV,F=5kHz, fC=465kHz,rD=125.试计算输入电阻Ri、传输系数Kd,并检验有无惰性失真及底部切削失真。题6-14图解6-14615 求uo(t)的表示式.题6-15图解6-15(1)(2) 616 并联检波器如图所示。输入信号为调幅波,已知C1=C2=0.01F,R1=1k,R2=5k调制频率F=1kHz,载频fC=1MHz,二极管工作在大信号状态。(1)画出AD及BD两端的电压波形;(2)其它参数不变,将C2增大至2F ,BD两端电压波形如何变化?题6-16图解6-16(1)此时低通网络的截止频率为因为FfHfC,所以电路是正常检波。各点波形如下(2)当C2增大到2F时因为fHUs。求输出电压表达式,并证明二次谐波的失真系数为零。 题6-17图解6-17设二极管为过零点的理想折线特性 .检波效率为Kd同样求得因此当忽略高次项后,得到:另外从上式可见,由于二次谐波都是由cot的偶次方项产生的,但平衡输出后,n为偶次方项被彻底抵消掉了,所以输出只有调制信号的基频和奇次谐波分量,偶次谐波分量为0;而二次失真系数定义为的二次谐波振幅与基频分量振幅之比,所以二次失真系数为0。618 图(a)为调制与解调方框图。调制信号及载波信号如图(b)所示。试写出u1、u2、u3、u4的表示式,并分别画出它们的波形与频谱图(设C)。 题6-18图解6-18当带通滤波器的中心频率为载波频率,且带宽为2时,得各点波形如下619 已知混频器晶体三极管转移特性为:iC=a0+a2u2+a3u3,式中,u=UScosSt+ULcosLt,ULUS,求混频器对于及(L-S)及(2L-S)的变频跨导。解6-19根据已知条件,电路符合线性时变条件。则线性时变跨导为620 设一非线性器件的静态伏安特性如图所示,其中斜率为a;设本振电压的振幅UL=E0。求当本振电压在下列四种情况下的变频跨导gC。(1)偏压为E0; (2)偏压为E0/2; (3)偏压为零; (4)偏压为-E0/2。题6-20图解6-20设偏压为EQ,输入信号为uS=UScosSt,且ULUS,即满足线性时变条件。根据已知条件,则电流可表示为621

}

最新关于工厂节能改造方案范文

  LED照明工厂节能改造方案

  LED照明灯具的优点主要在于体积小,LED照明灯具耗电量低,使用寿命长,高亮度、低热量,环保,坚固耐用。LED照明灯具的内在特征决定了它是最理想的光源去代替传统的光源,它有着广泛的用途。

  一、LED节能灯的优点:

  LED基本上是一块很小的晶片被封装在环氧树脂里面,所以它非常的小,非常的轻。

  LED照明灯具耗电相当低,一般来说LED的工作电压是2-3.6V。工作电流是0.02-0.03A。

  这就是说:它消耗的电能不超过0.1W。

  在恰当的电流和电压下,LED的使用寿命可达10万小时。

  4.高亮度、低热量

  LED发光二极管厂家,LED使用冷发光技术,发热量比普通照明灯具低很多。

  LED是由无毒的材料作成,不像荧光灯含水银会造成污染,同时LED也可以回收再利用。

  LED照明灯具是被完全的封装在环氧树脂里面,它比灯泡和荧光灯管都坚固。灯体内也没有松动的部分,这些特点使得LED照明灯具可以说是不易损坏的。

  节能能源无污染即为环保。直流驱动,超低功耗(单管0.03-0.06瓦)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。

  LED光源有人称它为长寿灯,意为永不熄灭的灯。固体冷光源,环氧树脂封装,灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰等缺点,使用寿命可达5万到10万小时,比传统光源寿命长10倍以上。

  LED光源可利用红、绿、蓝三基色原理,在计算机技术控制下使三种颜色具有256级灰度并任意混合,即可产生256×256×256=种颜色,形成不同光色的组合变化多端,实现丰富多彩的动态变化效果及各种图像。

  环保效益更佳,光谱中没有紫外线和红外线,既没有热量,也没有辐射,眩光小,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。

  与传统光源单调的发光效果相比,LED光源是低压微电子产品,成功融合了计算机技术、网络通信技术、图像处理技术、嵌入式控制技术等,所以亦是数字信息化产品,是半导体光电器件“高新尖”技术,具有在线编程,无限升级,灵活多变的特点。

  二、LED照明市场可行性分析报告:

  人类社会发展到今天,能源日益紧张,因为能源的争夺而发生的战争屡见不鲜,可见各国对能源的的重视,顺理成章的大力发展节能减排的战略目标也就成为各国政府目前非常重视的一块。这个时候LED节能灯的出现,成为继白炽灯、荧光灯之后的新一代“革命性”光源,将大大降低我国能源消耗。其产业发展及市场应用对于实现节能减排战略目标的意义十分重大。1、改造前后费用

  假设1:照明每天使用12小时,每年使用时间为365天。

  普通照明灯:85W

  LED照明灯:30W(代替85W现用灯)

  假设每一度电的电费为1.00元,则每年可节约的电费为X:

  按使用100个照明灯,则每年LED照明灯比用常规照明灯节省240.9*100=24090元。

  假设2:照明每天使用12小时,每年使用时间为365天。

  普通照明灯:200W

  LED照明灯:50W(代替200W现用灯)

  假设每一度电的电费为x=1.00元,则每年可节约的电费为X:

  按使用100个照明灯,则每年LED照明灯比用常规照明灯节省657*100=65700元。

  假设3:照明每天使用12小时,每年使用时间为365天。

  普通照明灯:400W

  LED照明灯:80W(代替400W现用灯)

  假设每一度电的电费为x=1.00元,则每年可节约的电费为X:

  按使用100个照明灯,则每年LED照明灯比用常规照明灯节省9800元。

  (a)高质量的现用照明灯的使用寿命1万小时左右,为了保证现用照明灯能提供正常光效的前提下,每一个常规现用的照明灯每年的折旧费用为20%――40%之间,所以平均的折旧率至少为30%;还有人工成本。

  (b)LED有5万小时的使用寿命,光衰小,每年的折旧费用很低,无需维修。可以使用5H(年照明时间)=11年。

  3、经济效益对比:(保守估算,按5年使用)

  A、节能改造后LED节能灯:(按假设3)

  2.回收时间:每100支灯每天节省383元乘以180等于68940元半年时间就可以收回成本

  3.收益时间:5年减-半年6个月还剩4年6个月

  即5年内不但收回成本,还可以赚回电费629100元

  按100支计算:节约电费629100元,无需维护,赚钱效果相当惊人。

  B、节能改造前现用照明灯:

  (a)按2年换一次:2乘2元

  (c)一年共计消耗电费:480乘以360天=-172800度

  按1元1度电计算:成本20000元

  五年时间用电172800乘以5等于864000度按一元一度电算就是864000元

  在加上成本按2年换一次60000加864000等于924000元损失电费和钱是相当惊人的(需要维护,还有人工成本)。

  对比结论:工厂使用照明数量越多,节能改造效果越明显。采用新型LED照明替代传统照明,可大幅度降低工厂、企业经营成本。

  三、LED照明灯的其它优点:

  1.光源寿命长、显色性好。光色柔和,呈现被照物体的自然光泽。

  2.不需要预热。LED照明灯可以立即启动和再启动。

  3.电气性能优良。LED照明灯的电流谐波低,恒压供电,输出恒定光通量;绿色环保。

  4.不含汞、氙等有毒元素,利于回收和利用,而普通灯管中含有汞和铅等元素。

  5.LED日光灯恒流驱动,无频闪,保护眼睛。常规光源都是交流驱动,产生频闪。导致眼睛容易疲劳。

  6.宽电压工作,电压在85V-265V之间均可照明,不受电网波动影响。

  7.LED照明不会产生噪音,对于使用精密电子仪器、照度要求高的场合为上佳之选。

  一般工厂照明灯使用数量庞大,换用led照明灯后,节电效果十分明显。如果采用启辉经济型LED照明灯,那么其经济效益更加划算。

  深圳电子厂的空压机节能改造方案

  经过空压机节能改造专家康灿从空压机运行采集的数据、空压机配备情况,和改造施工以及日后不间断供气维护各方面因素考虑。可以采取以下空压机节能改造方案来进行节能改造,分2个阶段进行:

  任意改造2台110kw空压机,第3台110kw不改造,做后备使用。

  改造的2台空压机,均可作为主机使用,在平均生产能力情况下,可以只开一台机器。每台可独立供给足够压力。生产旺季可以开启2台,进行功率自动分配,在用气量突变且较频繁的情况下可以快速反应。两台空压机变频化,可保证供气最优。如果采用只对1台110kw空压机进行节能改造,设置为变频控制,担心当需要功率在110~130kw区间时,即工频全速,变频最低速或休眠,如果变频空压机总是处于休眠临界状态,在用气突然减小后会造成达到压力上限,工频空压机卸载,低于下限,工频空压机再启动,将导致供气波动。所以最好是工频全速或工频停机+变频在一个合理的功率段范围内自动调节,这样控制最优,供气最稳定,节能最大。而喷涂机房,因为有2台小功率的空压机可以充分调配,因此不存在该问题,可作另一种空压机节能改造方案。

  如果将22kw或37kw设为主机,单凭22kw,37kw供气能力不足,55kw和132kw开启后又会供气过剩,将导致55kw或132kw频繁加卸载,回到工频控制老状态,起不到很好的变频节能效果。

  因此采用只对55kw空压机进行变频节能改造,55kw作为主控机器,55kw作为主机一直开机,功率在0~55kw可调节,同时可以调度22kw,37kw,甚至132kw。采用此空压机节能改造方案,用气需求在0~114kw内得到自动调节。55kw变频改造空压机支持工频方式,提高抗风险能力。

  如果55kw、22kw、37kw故障或要维修,可启动132kw,满足供气需要,如果用气超过132kw供气能力,启动22kw,37kw,55kw中任何一台可用设备,从最小功率的启动。

  空压机节能改造要根据空压机的实际使用情况来制定最有利、最节能的'改造方案,这样才是一家专业节能改造公司所具备的能力。

  水泥厂节能改造方案

  随着节能法的颁布与实施,节能作为企业增效降耗、降低经营成本的重要手段,已普遍被人们所认识和接受,在利国利民的同时,也有利于树立企业社会形象,提高设备自动化水平。

  根据水泥制造工艺要求,结合水泥厂所使用的生产设备,我们得到如下结论:大部分水泥厂的一些设备尤其是大功率设备在生产过程中绝大部分时间都不是满负荷,设备运行的自动化程度相当低,几乎完全靠人工调节,如立窑供风系统、成球预加水系统、生料均化给料系统、水泥选粉系统、机立窑卸料系统等。

  此方案的优点明显,

  2、安装、调试及控制方便;

  3、及时保护电机和其他设备,保证设备可靠运行

  4、节电效果明显,回收成本快;

  5、提高了生产过程的自动化程度;

  6、提高了生产过程的加工工艺精度。从总体的效果来看,改造后的实际系统在水泥制造行业深受客户的普遍欢迎。为其取得了显著的经济效益和良好的社会效应。

  1、变频器在立窑罗茨风机上的应用经验

  在水泥厂的立窑风机上,一般都是采用挡风板进行调节,其原理是调节阀门的开度,亦即利用风道的阻力特性调节风量,其缺点是:风机始终在全速运转,无法根据需求准确地调节其风量,因此造成风量的跑、冒、漏严重,也使电机作为无用功而大量白白地消耗。

  立窑煅烧熟料所耗的电能中,罗茨鼓风机的电耗一般占60%左右,随着电价的调整,电费在水泥生产成本中所占的比例越来越高。因此,降低鼓风机的能耗成为提高企业经济效益的重要一环。

  通常在设计中,用户风机设计风量比实际需要的高出很多,这样容易形成了人们常说的“大马拉小车”的现象,造成电能的浪费,而且无计可施,利用变频器可以通过适当降低风机电机的运行频率,恰到好处地满足风量的需求,从而轻易地将此部分电能节约下来。

  无功功率不但增加线损和设备的发热,更主要的是功率因数的降低,降低了电网的有功功率,S2=P2+Q2,当COSФ≈1时,Q=S×sinФ≈0,此时有功功率P≈S。变频器的动态功率因数补偿功能可使无功功率近似为0,从而增大电网的有功功率,减少了无功损耗。另外,功率因数的改善还可节省很大一部分电网容量,直观的体现在风机电机温升降低、噪音降低,供电发电机机组温升降低、噪音降低、耗油量大幅度降低,大大地延长设备维修周期及使用寿命。

  某厂有立窑罗茨风机185KW一台,最大运行电流200A,最小运行电流160A,额定电流为355A,频率50HZ,用风板调节风量最大调节60%,每天运行24小时,每月运行20天,每年需运行11个月,电费0.58元/度。

  用变频器带动风机电动机传动,对风机实现无级调速,放弃传统的挡风板,既降低电机转速,又达到节能目的。

  P(功率)=Q(流量)×H(扬程)

  当电机转速从n降至n’时,流量Q、扬程H及轴功率P的关系如下:

  显然,当电机转速下降时,流量按线性关系变化,而电功率却按立方,根据我司长期的经验,我们认为该厂风机系统节能在30%以上是完全可能和可行的。即单台185KW风机系统按每年运行11个月,每月20天,每天24小时计算,每度电按0.58元计费,每年电费为:P=×11×20×24×0.58=321552,按节电30%计算,每年节约电费为:.3=96465.6元.工程改造费用需9.35万元.即12个月左右即可收回全部投资。

  1、由于采用电位器控制,因此可靠性高,稳定性好,容易操作。

  2、由于加装变频调速器,减小启动时启动电流对电机冲击,延长机械使用寿命,减小维修工作强度。

  3、提高了电网功率因数,避免增加电网增容费。

  在离心风机上的应用

  有某些水泥厂是采用高压离心式风机进行供风的,该种水泥窑的风量调节是通过风门开启度对风量进行调节。对于离心式风机、水泵的变频调速改造同样有巨大的节能潜力。我们通过沸腾式锅炉高压离心式风机应用变频调速的方法调节风量,实践证明其节能效果在30~50%。对于水泵的变频改造节能效果高达70%。为什么离心式风机,泵类设备通过调速调节风量或流量有如此惊人的节能呢?在此将其原理加以阐明。离心式风机、泵类设备的流量与转速成正比,如公式(3-1)压力与转速平方成正比,如公式(3-2)功率与转速的立方成正比,如公式(3-3)

  Q∝N式3-1Q:表示流量

  H∝N2式3-2N:表示转速

  P∝N3式3-3H:表示压力

  将经上3个公式绘成一张图,可压力关系以清楚看到,改变转速其流量线性变化的,而功耗则是立方关系变化,因此在调节风量或流量时如降低20%的风量或流量,功耗则会下降50%。但是必须注意,转速与压力是平方关系,当转速下降20%压力则会下降64%,因此必须要注意工艺要求压力范围不能象罗茨风机那样,不用考虑转速与风压的关系。

  离心风机、泵类设备传统的风量、流量风门控制控制的,大量的能源耗在风门或截流阀的阻力上,如公式(3-4),风门或截流阀控制流量的功耗与

  P=P0+KQ式3-4变速控制

  Q:表示流量K:为系数

  P:表示功耗P0:表示基本功率

  比较风门或截流阀控制与变频调速调节,可以看到在流量变化范围,采用变频调速的方法具有很大的节能潜力,因此在水泥厂的供水泵或其它离心风机上进行变频器改造同样会取得很大的节能效果。

  在立窑卸料机上的应用

  立窑卸料机若采用滑差调速电机,其转速通常控制在300~1000rpm(工艺上根据窑的情况,对卸料速度进行控制的)。采用变频调速的方法取代滑差电机,经过多个厂家应用结果表明,平均节能达40%左右,这是因为滑差调速是一种耗能的低效调速方法。

  滑差电机主电机轴的输出功率:P0=KM0N0(P0表示输出功率,M0表示负载转速,N0表示电机转速,K为常数)

  滑差头输出功率P1=KM0N1(P1表示输出功率,N1表示滑差头转速)

  由此可见,滑差电机的转速越低,浪费能源越大,而卸料机的转速通常在400rpm左右运行,因此改用变频调速的方法会有50~60%的节能效果。

  在空气压缩机上的节能应用

  气压缩机恒压供气使用变频器与压力控制构成闭环控制系统,使压力波动减少1.5%,降低噪音、减少振动。保证设备长期稳定运行,从而减少了设备维护工作量,延长了设备使用寿命。用变频器后,空压机可在任何压力下随意起动,打破了以前不允许带压起动的规定,起动电流也较以前大大降低。通过使用变频器后的实例,多数压缩机节电率约在20%左右,比节电率较大的风机低,但压缩机的电动机功率都较大,从几十瓦直到几百瓦甚至几千瓦,其节电量值较大,经济效益十分显著,同时控制平质大为提高,可使压缩空气的压力始终保持恒定,用户感到十分满意。总之压缩机使用变频实现节能计改项目使值得推广的。

  在预加水成球系统中的应用

  目前,预加水成球技术在立窑水泥厂中应用已相当普遍。它在提高成球质量,改善煅烧操作条件,提高立窑熟料产量和质量方面取得了比较明显的效果。其结合微机双回路调节器,就能实现水料比例自动跟踪,自动调节,做到恒压供水。调节及时,极大地减轻了工人的劳动强度,同时也改善了成球质量,使预加水系统真正起到预湿成球的作用,为立窑生产出优质高产的熟料创造了条件。

  某水泥有限公司的旋风式选粉机,原设计由JZT392-4型75KW电磁调速异步电动机(滑差电机)拖动,其优点是调速系统简单。价格低廉,有一定的调速范围,缺点也较多:电机本体噪音高、振动大能、耗高、无功损耗大、轴承故障率特别高,滑差控制仪安装于粉尘飞扬的电机旁边,多次出现带负荷起动,不能调速和突然失速等故障,现场维护量大,影响整个系统的安全运行。

  针对上述问题,结合生料车间选粉机负荷转速不超过600r/min的特点,对选粉机电气部分进行变频调速技术改造。经实际测量,选粉机改造前,运行速度在594r/min时,输入电压385V,输入电流72A,功率因数0.82,故输入功率为40KW;改造后,运行速度在594r/min时,输入电压387V,输入电流18A,(热继电器也做了相应调整),功率因数0.92(变频器加装了直接电抗器)则输入功率为11KW。改造后一年中,没发生过任何故障,保证了系统的安全运行,大大减少了维护工作量和维修费用,而且节能效果十分显著。

  变频器在水泥厂的应用还不止这些,比如说回转窑球磨机、卸料圆、盘给料机、双管绞刀裙、板喂料机调速皮带称喂、煤绞刀、蓖冷机等一切需交流调速的设备都可以采用变频调速器。

  从以上应用情况可以看出,水泥厂使用变频器有以下突出优点:

  A.满足调速的工艺要求,变频调速器的调速范围在10:1以上,而水泥生产工艺过程中调速范围在10:1范围内即可满足要求。

  B.便于实现自动化控制,由于变频器本身是由一个16(或32)位微处理器所控制,设有RS485(或422),A/D输入,D/A输出接口,为自动控制(与上位机联网)创造了充分的条件。

  C.获得可观的节能效果。

  D.降低工人的劳动强度,由于调速系统整体可靠性提高,故障率低,免维护周期较长,可减轻有关维护人员的工作量。

  E.提高产品质量及产量。

  在水泥粉磨工艺中应用

  在水泥粉磨工艺中球磨机入磨物料粒度的大小,对其台时产量影响较大,预破碎工艺作为提高磨机台时产量、降低粉磨电耗的重要途径,引起了许多水泥企业的重视。根据工艺要求,水泥立窑放料每次持续2~3min,间隔2~3min,但目前几乎所有水泥企业中破碎机处于工频恒速运行状态,24h连续运转,造成电能的巨大浪费,并影响电机和破碎机的使用寿命。另一方面,由于破碎机具有十分大的惯性,不易频繁启停,所以即使使用变频器也难以解决系统制动时产生的泵升电压引起保护电路动作,使系统无法正常工作。

  针对系统的以上特点,利用系列变频器实现破碎机的变频调速和软启动;利用再生能量回馈单元克服破碎机制动过程中产生的过高的泵升电压;利用PLC实现系统的逻辑闭环控制,使破碎机的工作与立窑放料同步,实现间歇运行。从而在改善工艺控制质量的同时,最大限度地节约了电能,降低了生产成本。现场调试和运行结果表明,系统运行可靠,节电率可达60%以上。

  上述系统已在某水泥厂投入实际运行。系统根据送料信号自动实现启制动运行,破碎机运行速度连续可调。电机可以实现频繁软启动,基本无启动电流冲击,启动力矩足够。系统在变频运行条件下,若变频器突然故障,则自动切换至“工频”状态继续运行,同时发出声光报警信号(内部可选)。根据现场工况需要,将有放料信号时变频运行给定频率设为43Hz,系统运行电流为27A,运行电压280V,改造后的系统平均每年耗电5.7万度。根据现场记录,系统在改造前工作频率为工频50Hz,运行电流为32A,运行电压400V,平均每年耗电19.42万度。改造后的节电率为70.6%。该系统的突出优点如下:

  1、利用变频调速技术改造了水泥熟料破碎机的拖动系统,满足了破碎机的低速、间歇运行特点,保证了工艺控制质量,节能效果明显,并有利于延长破碎机和电机的使用寿命。

  2、利用能量回馈控制技术克服破碎机大惯性引起的泵升电压,有效地保证了变频器的安全运行。系统除了变频器和能量回馈装置所具有的20余种保护功能和故障自诊断功能外,还增设了电机过热、控制回路保护及报警。

  3、利用可编程控制器PLC实现了各种逻辑控制、变频器启制动自动控制及手动/自动、工频/变频转换和故障自切换等功能,使系统控制灵活方便,功能齐全成功的经验充分说明了水泥行业变频改造的巨大潜力,变频改造后在短短几个月的时间里仅仅靠节约电费就收回整体投资,在以后的生产经营中也能够以较低的生产成本在市场的竞争中处于更有力的位置。水泥制造的变频改造势在必行,一方面体现出公司强大的经济实力和公司领导层非凡的远见卓识,另一方面能够给公司带来丰厚的利益回报,并提高了公司生产方面的自动化程度。

【最新关于工厂节能改造方案范文】相关文章:

}

我要回帖

更多关于 变频器g型和p型的区别 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信