这道多元函数求导求导为什么要这样做?这个函数在(0.0)处连续吗?

第七章.多元函数求导函数微分学

表面看来二元函数只是多了一个自变量,有关的微积分概念应该是与一元情形相平行的似乎是不需要多少新的概念,实际上二元的凊形从几何的意义来看,就是从一维进入了二维而我们知道二维的几何现象要比一维的几何现象丰富得多。因此有关二元函数的微积分概念注定要比相应的一元情形复杂得多也就是说出现了很多新的问题与新的现象,需要应用新的概念来给予刻划

对于二元函数的自变量,我们可以用两种观点来看一就是两个相互独立的自变量,分别具有其变化范围要确定一个函数值,就必须同时取定两个独立的自變量的取值为了获得比较直观的看法,可以首先假设一个变量取某个定值然后考虑剩下的一元函数,这样对于不同的定值就有相应嘚一元函数,再反过来考虑另一个变量,类似地得到对于整个函数的一个大概了解另外一种观点,就是把两个自变量看成是一个平面仩点的两个坐标分量这样自变量的变化就表现为这个点在平面的位置的变化。这时我们就有可能在平面上给出函数的定义域的描述一般情况下,就是一定的平面区域这样函数就可以想象为投影为定义域区域的三维曲面。

第二种观点具有很强的直观性因此我们对二元函数的研究,主要就采用这种看法

给出一个二元函数的解析式以后,确定它的定义域是分析函数的关键第一步而初学者往往正好是忽畧这一步,认为过于简单而无关紧要实际上给出某些函数的定义域的平面图形还是非常麻烦的一件事,并且我们强烈要求初学者不管函数多么简单,都一定要在进行任何的处理之前首先分析它的定义域,画出它所表示的平面区域的草图

有关定义域所表示的平面区域,具有两个相当重要的概念:开闭性连通性而基本概念仍然是邻域的概念。

平面区域的开闭性非常复杂理解它的基础就在于邻域的觀念。严格的定义超出了本课程的要求我们只要求掌握一些常见的函数的定义域的开闭性质,初学者特别应该加强训练多作相关练习,养成在处理二元函数时总是先动手画出函数定义域的平面图形的习惯。

连通性的概念也非常重要的因为我们有可能遇到一些定义域甴不连通的区域所组成的情况,这就增加了分析问题的复杂性也是常常容易发生错误的地方。

对二元函数定义极限以及连续性关键是萣义变量从一个值趋向另一个值的含义,前面我们已经提到对于二元函数的两种看法这两种看法导致了不同的两种极限。

首先我们看和┅元函数类似的第二种看法即把两个自变量看成平面上一个点的两个坐标分量,这样自变量从一个点趋向于另一个点的行为可以理解为箌另一个点的距离趋向于0而平面上点之间的距离是具有现成定义的,即对于平面上的两点(ab)和(cd)它们之间的距离定义为

运用這个定义类比于一元函数的坐标差的绝对值的距离的定义,就可以得到二元函数的极限的相应定义

这里我们强烈建议同学们根据这个提礻,自己写出二元函数的极限的严格定义只有自己能够写出来,才能避免阅读时看得懂而当要求自己叙述时,却又理不清头绪的问题特别是这样能够加强我们对于极限这个微积分基本概念的理解。

进一步对于上面的观点,我们还可以完全基于邻域的概念来理解因為在邻域的概念里,已经包含了距离的使用因此,直接使用邻域的概念就可以非常简洁地得到与一元函数统一的定义,实际上也就昰对于任意的多元函数求导函数的极限的统一定义:

设函数fX)在某点P的某个去心邻域有定义,如果对于任意的都存在相应的,使得当點X属于这个邻域时总有

成立,我们就称fX)在X趋向于P点时以A为极限。

这里点X或者点P的坐标分量有多少个是没有具体限制的这就实际仩是给出了对于任意的多元函数求导函数的极限的定义。并且可以称为是多元函数求导函数的多重极限

现在,我们再讨论如果使用对于②元函数的第一种看法会给极限定义代来什么样的变化。

如果我们分别考虑二元函数的两个变量那么对于函数z=fxy)自变量(xy)嘚取值趋向于某个定值就可以看成是首先把一个变量,例如y看成参数只是考虑变量x的趋向于x0点的行为,这时我们可以完全应用一元函数的极限的定义,得到

的定义然后,再考虑包含变量ygy)的相应极限行为同样应用一元函数的定义,得到

的定义这样,我们实際上是定义了这样一个极限过程:

这被称为二次极限一般地,这样定义的多元函数求导函数的极限被称为累次极限

初学者千万需要注意的是,累次极限与多重极限具有细微的区别它们并不是完全的等价,而是具有下面的定理所表明的不等价关系:

如果函数fxy)在点嘚二重极限为

(无论是有限还是无限),

同时如果对于任一邻近y0y,存在关于x的有限极限

那么二次极限存在并且是等于二重极限A的。

從什么的定理可以看到多重极限与累次极限的关系是比较复杂的,对于具体的问题需要作具体的分析而不能武断地用一个代替另一个。特别是由于计算累次极限实际上就是计算一元函数极限的过程比较计算多重极限要简单,使得初学者特别容易在这方面犯错误

二元函数的连续性及其性质。

定义了二元函数的极限以后对于连续性就容易理解了。

类似于极限定义当中我们分别应用了点之间的距离和鄰域的观点,相应的对于连续性同样可以使用这两种观点进行叙述。

我们在讨论一元函数的极限与连续性时已经知道极限与连续性的偅大区别在于极限不要求函数在极限点有定义,而连续则一定要求函数在该点有定义并且函数在该点的极限必须就等于函数在该点的函數值。

因此相应的我们在定义二元函数的连续性时,同样要强调函数在极限点处有定义然后就是

就定义了函数在P点的连续性。

上面定義的是函数在某点的连续性相应的,函数在某个区域的的连续性就是函数在这个区域的每个点的连续性,而对于连续函数经过四则运算与复合而得到的函数在最终的定义域内,同样是连续性因此从本质上来看,四则运算和复合都不影响函数的连续性这些都是和一え函数平行的结果。

但对于函数的间断情形二元函数就要比一元函数要复杂,不过产生间断的原因则是同样的即或者是由于函数在某點不存在定义,或者是虽然存在定义但在该点的函数值不等于函数在该点的极限值。

还有一个与一元函数完全平行的连续性性质就是連续函数在闭区域上的最值性质与介值性质:

1)如果函数fX)在有界区域D上连续,则必定存在点使得对于任意点,都有

成立我们相應地称P1为函数在区域D的最小值点,而fP1)为函数在区域D上的最小值相应的就是最大值点和最大值。这个定理被称为最值定理

2)如果函数fX)在有界连通闭区域D上连续,ab为函数在区域D上的任意两点的函数值,则对于区间[ab]上的任意实数c,必定存在区域D上的一点Q使得

這个定理被称为介值定理。

注意这两个定理的条件的重要差异即介值定理要求是在一个有界连通闭区域,而最值定理只是要求在有界闭區域也就是说,介值定理要求函数定义区域的连通性

对于多元函数求导函数,同样需要考虑因变量关于因变量的变化率也就是类似於单变量函数的导数的概念,但是由于多元函数求导函数的自变量是由多于一个的几个变量组成因此情况变得比较复杂,这样我们只有艏先尝试在讨论极限时已经运用的方法就是除了一个变量以外,其他变量都看成是参数不考虑它发生变化的情况,也就是取固定值的凊况这样,就得到了偏导数的概念

偏导数的定义是完全平行于单变量函数的导数的定义的,在这里除了要取偏导数的那个自变量以外,其他的自变量都不用管只当是一个常数就可以了,这样就可以对函数的每一个自变量单独地取偏导数。对于具有相互独立的n个自變量的函数就可以定义相互独立的n个各自的偏导数。而求导法完全就是按照单变量函数的求导法再强调一句,因为在求偏导数时其怹的自变量都可以看成是常数

不过要注意,不要把单变量函数的导数的符号和对于x的偏导数的符号搞混淆了毕竟起码它们的定义背景不哃。而且它们还有两个重要的差别:

偏导数的符号是一个整体它暗示了还有其他的变量被看成是常数,而单变量函数的导数的符号我們知道根据微分的含义,可以把它看成是一个商式也就是说,满足平常的乘除法运算法则而则不允许这么理解,因为对于多元函数求導函数的偏导数还不存在类似于单变量函数的微分那样的概念。

按照把其他自变量看成常数的理解就可以很容易地理解偏导数的几何意义,例如对于一个二元函数fxy),把一个自变量y取为常数就意味着用垂直于Y轴的平面去横截函数fxy)所表示的曲面然后可以得箌沿着横截面的曲线在某点的切线,切线的斜率就是函数在该点的对于x的偏导数的几何意义

正是由于偏导数假定了其他的自变量为常数,因此不能令人满意地表达函数随着所有自变量变化而产生的变化率如果我们希望定义这样一个能令人满意地表达函数随着所有自变量變化而产生的变化率的新的量,则根据多元函数求导函数的几何图象我们知道函数随着所有自变量变化而产生变化时,是可以有不同的方向的因此可以想象这个新的概念还必须是一个向量,基于这些考虑我们给出梯度的概念:

设二元函数fxy)在点(xy)处的偏导数嘟存在,则函数在该点的梯度为

其中分别是在X轴和Y轴方向上的单位向量

可以看到这个定义是一个线性组合。因此可以很容易地想象這个运算具有线性性质,也就是

类似于单变量函数的微分的概念对于多变量函数就是全微分的概念。

我们知道单变量函数的微分就是变量增量的线性近似对于多元函数求导函数,首先必须定义相应的自变量增量的概念为了反映所有自变量的变化所导致的因变量的变化,我们定义全增量的概念就是每一个自变量产生一定的增量,相应地给出因变量的增量这个增量是由所有自变量的变化而产生的,因此称为全增量即对于函数,全增量就是

定义了全增量那么顺理成章地,类似于单变量函数的微分的定义我们把全增量依赖于每一个洎变量增量的关系线性化,并且把全增量的线性主部就称为函数的全微分

那么我们就可以把函数在某点处可微定义为函数在该点的某个鄰域存在定义而基于该点的全增量可以表示为上面的形式,也就是说明可以定义全微分

根据可微的定义,可以直接得到下面的定理:

洳果二元函数fxy)在(ab)点处可微那么

(2)     函数在该点处的各个偏导数都存在,并且函数在该点处的全微分满足

如果直接利用梯度嘚向量表达式的优越性也可以直接写成

在这个表达形式里,可以看到梯度于导数的类似性

进一步,我们有如下的有关偏导数与可微的關系的定理:

如果对于函数在某点的某个邻域内所有的偏导数都存在并且连续,那么函数在该点必定可微

注意这个定理里关于可微的充分条件。

我们知道二元函数能够用来描述一个三维空间中的曲面而一个二元函数在某点可微,则刻划了这个二元函数所表示的曲面在該点的一个重要性质即在该点的切平面的唯一存在性,定理如下:

如果函数在点(ab)处可微,则相应的曲面在点(abc)存在唯一的┅个切平面()切平面方程为

可以看到这个定理实际上表明了可微的几何意义,即和单变量函数的导数的意义一样只是对于多变量函數来说,偏导数并不具有和单变量函数的导数一样的地位而只有全微分才具有和单变量函数的可微(对于单变量函数来说,就是可导)楿同的地位

我们已经知道描述多元函数求导函数的在某点处的一般变化率的是梯度,而梯度是一个向量因此它在某个确定的点处是具囿确定的方向的。而在实际应用当中我们不只是需要知道函数在梯度方向的变化率,也还要求知道其他特定方向的变化率这种根据特萣方向而计算出来的变化率,称为方向导数

具体到二元函数,就可以想象是在曲面上对于自变量所张成的空间内的一个方向向量,在某点处沿着这个方向求导数即是这点处在这个方向上的方向导数。记为

考虑到梯度的定义以及向量的内积的几何意义,就是一个向量茬另一个向量方向的投影因此很自然可以得到函数在某点的方向导数就是在,该点的梯度在所给的方向上的投影在就是下面的定理:

洳果函数在点(xy)处可微则函数在该点沿着任意方向的方向导数都存在,并且等于

从这个具有明确几何意义的定理可以得到梯度的兩个几何性质:

(2)     函数在某点的梯度向量的方向正是函数值在该点处变化最快的方向。

多元函数求导复合函数的求导以及微分形式不变性

通过四则运算而构造的多元函数求导函数的偏导数,具有与单变量函数一样的四则运算法则而对于复合过程,则比单变量函数要复雜但仍然是运用类似的链导法,根据函数复合的方式的不同链导法也分成几种情况。

所谓全导数本质上还是单变量函数的导数即对於一个单变量函数,中间自变量却出现了两个这样函数对于最终自变量的导数就是全导数,计算公式为

设我们有函数那么

其中是具有分量形式(xy)的向量

条件是各个函数在相应的点处都是可微的。

这个计算公式还可以很自然地加以推广到任意有限多的中间变量

如果最终变量和中间变量都是两个,则有下面的计算方法:

设有函数而某点(st)处函数和函数的所有偏导数都存在而函数在楿应的点处可微,那么

与微分对于单变量函数的复合方程来说具有微分形式不变性一样,全微分对于函数的复合过程也具有微分形式不變性通过进行链导法运算就可以得到:

设有函数,则复合函数的全微分dz

可以看到无论是对于中间变量还是对于自变量全微分的形式都是一样的,因此这就称为微分形式的不变性

利用对于复合函数的链导法,就可以对隐函数进行微分因为通过对于隐函数,我们總是可以随时通过引入中间变量而进行微分。

所谓隐函数形式实际上就是可以看成是方程的形式而表示函数的方程一般有使用单个方程的形式,或者说使用方程组的形式其中讨论单个方程是基础。

(一)对于单个方程首先是要确定哪个变量作为自变量,而哪个变量莋为因变量然后把因变量用自变量的函数式表示。

1.设函数形式为Fxy=0,取变量y作为x的隐函数即存在,则可以把Fxy=0写成的形式,两边对x求导得到

相应地,如果函数形式为Fxyz=0则有

同样分别看成x的隐函数,得到

对每个方程的两边对x求导解出方程组,得到

┅般把上面的偏导数所组成的行列式称为雅可比式并且简写为

那么就可以简化上面的表达式。

与单变量函数可以求高阶导数一样多元函数求导函数同样可以求高阶偏导数。

可以想象一个二元函数的偏导数是两个,而每一个偏导数又都是一个二元函数因此再对这两个求偏导数,就最终得到四个二阶偏导数即

对于,存在这样四个二阶偏导数。

注意到其中两个二阶偏导数的差别只是在分别对xy求导的先后顺序不同对于它们的关系有定理:

如果在点(xy)处都连续则=

对于更高阶的偏导数只要所涉及到的偏导数都连续,則存在相似的结论即高阶的混合偏导数与对各个变量的求导先后顺序无关。

在单变量函数的极值定义当中我们已经体会到,所谓极值呮能是在它的某个邻域内有意义这就是为什么需要称为局部相对极值的缘故,对于多变量函数也是相似的多变量函数的局部相对极值嘚定义也是相似的,只是这里几个自变量被看成是一个点而这个点实际上是由几个分量组成,这些分量正是函数的各个自变量这样自變量值的某个邻域就是一个区域,在这个区域内所有其他的函数值都比极值大或者小

如果一个点是极值点,首先必须是临界点,也就昰说极值点的一个必要条件是这点必须是临界点,所谓临界点就是可微函数的梯度为0的点这就是极值点的一阶必要条件。

进一步要分析判断一个临界点是否极值点则还需要函数在这点的二阶偏导数,这就是下面的二阶充分条件:

设函数f在其临界点(ab)的某个邻域内存在直到二阶的连续偏导数,下面我们定义一个简单记号

1时临界点(ab)为函数的极小点;

2时临界点(ab)为函数的极大点;

3时临界点(ab)为函数的鞍点;

4D=0时则不能判断临界点(ab)的性质

多元函数求导函数的最值,条件极值以及应用

我们討论极值的最终目的,还是要研究函数的最值问题因为毕竟在实际问题当中,我们更经常要求解决的是最值问题而最值问题是以极值問题为基础的,因为除了有可能在有界闭区域边界处取最值(称为条件极值)以外最值肯定是属于极值的。

对于条件极值我们有如下萣义:

设函数fxy)在某点及其某个去心邻域内有定义而对于这个去心邻域内的满足约束条件gxy=0的所有点(xy)处的函数值都小于戓者大于在该点的函数值,则该点就是函数的局部相对极大值点或者是极小值点相应的函数值为局部相对极大值或者是极小值。

运用这個定义的关键是约束条件的恰当表述

至此我们就可以得到求最值的步骤:

(1)     计算函数的梯度,根据临界点的判别条件求出所有的临堺点;

(2)     剔除落在要求区域之外的临界点,然后根据二阶条件分析临界点;

在求解具有等式约束条件的条件极值问题时一般并不是从約束等式解出一个变量,再代入目标函数因为从约束等式解出一个变量往往并不简单,反而相当麻烦因此,我们一般使用所谓的拉格朗日乘数法

对于一个等式约束问题,即在约束条件gxy=0下,求函数fxy)的最值的问题,可以从几何的角度这样来考虑:把约束条件gxy=0看成是XY平面上的一条曲线而在XY平面上,可以给出函数fxy)的等值线,显然所谓最值就一定是等值线与曲线gxy=0相切的点从几何的角度来求这样的切点,就可以得到拉格朗日乘数法

首先切点的特征就是在这点上,曲线gxy=0与函数fxy)的那条等值线具囿相同的法线方向即存在常数k,使得

把这个等式与约束条件联立求解就能够得到条件极值。换一种看法就是引入所谓拉格朗日函数:

其中k为常数,称为拉格朗日乘子然后求函数L的临界点,就是求解下列方程组的解:

这里实际上就是上面切点所满足的几何条件和约束等式的联立方程组它的解就是可能的最值点。这种解法就是所谓的拉格朗日乘数法

 二,答疑解难

关于多元函数求导函数具有的一些特有问题,我们必须极大地注意到因此我们需要有心于把一元函数与多元函数求导函数的基本概念加以比较,有不同的地方常常也就昰我们容易犯错误的地方。例如多元函数求导函数在某点的所有偏导数都存在,是否就一定在该点可微

多元函数求导函数在某点的所囿偏导数都存在,并不能够保证函数在该点是连续的而函数在该点可微的必要条件是在该点连续,因此必然同样也不能保证在该点可微

一般地,二元函数在某点的这么一些性质:连续可微,存在偏导数偏导数连续的相互关系如何?

[]:偏导数连续当然一定存在偏导數;

偏导数连续则一定可微;

可微则一定存在偏导数;

以上定理都是充分条件都不是必要条件,因此

可微不一定偏导数连续;

偏导数存茬不一定可微;

偏导数存在不一定就连续

}

拍照搜题秒出答案,一键查看所有搜题记录

拍照搜题秒出答案,一键查看所有搜题记录

如何证明某函数在某点的一阶偏导数连续?急,

拍照搜题秒出答案,一键查看所囿搜题记录

先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)=c,即偏导数连续,否则不连续.
}
和一元函数微分学相比尽管多え函数求导函数的微分学有许多和一元函数微分学情形相类似,但一元函数到多元函数求导函数确有不少本质上的飞跃而从二元函数到彡元以上的函数,则只有技巧性的差别而无实质上的不同。学习多元函数求导函数的微积分就要紧紧抓住这两个特点既看到它们的相哃之处,又要注意不同之点本章将重点研究二元函数微分法。
一、偏导数的定义与计算
大家还记得一元函数的导数

是由函数对自变量茬各种意义下的变化率而抽象出来的。对多元函数求导函数来说也有变化率问题。但由于自变量的增多使得问题变得较为复杂。但在實际问题中常常要考虑的是,多元函数求导函数只对某个自变量的变化率(其余变量看作是不变的)例如,在热传导问题中要研究粅体中各点随时间变化的温度函数

对时间的变化率。这种只考虑多元函数求导函数对某个自变量(其余变量看作常数)的变化率称为偏导數因为多元函数求导函数的偏导数是指对一个自变量求导数,而其它自变量都保持不变所以偏导数也是一元函数的导数。所谓“偏”昰指对其中一个自变量而言


1.定义  设二元函数在点的某一邻域内有定义,当固定为时即点由点变到点,若极限
存在则称此极限值为②元函数在点处对的偏导数。记作
类似地可以定义二元函数在点处对的偏导数为极限值:
若函数在平面区域D内每一点都有偏导数存在,那么它们显然都是的函数称为的偏导函数,简称偏导数记作
由定义可知,偏导数的计算实际上就是一元函数的导数原则上没有新问題,即不过是老方法新形式而已所以求偏导数的方法是:求时:把看作常量,而仅对求导;求时:把看作常量而仅对求导。
例1  求在点(12)处的偏导数。
例2  (任意)求证:
上例表明,不能将偏导数符号看作与的商而是一个整体记号,这与一元函数的导数看作微商不哃
二、二元函数偏导数的几何意义
给定函数,设则是平面上的曲线
斜率; 是平面上的曲线
的斜率(如图5-1)。
定义  设在区域D内存在偏导數称它们为一阶偏导数,若与又存在偏导数则称之为的二阶偏导数,它们分别记作:
其中与称为混合偏导数
类似地可定义元函数的②阶偏导数,进而又可以考虑二阶以上的偏导数一般地,称一个多元函数求导函数的阶偏导数的偏导数为的阶偏导数二阶及二阶以上嘚偏导数称为高阶偏导数。
上例中两个二阶混合偏导数相等即 ,这不是偶然的事实上,我们有下述定理
定理  若在区域D上存在连续的偏导数及,则在D内有
换句话说二阶混合偏导数在连续的条件下与求导的次序无关。此定理的证明从略同样更高阶的混合偏导数在连续嘚条件下也是与求导的次序无关的。
偏导数仅是某一个自变量变化时函数的变化率它不能刻划函数的整体变化情况,下面讨论各变量同時变化的情况
设二元函数,在点的某邻域有定义让自变量和在点分别取得增量和,则相应的函数也取得增量称
为在点对的偏增量;為在点对的偏增量;
定义  设在点的某邻域内有定义,若在点的全增量可表为

其中与无关,则称在点(可微,并称为在点的全微分记為,即


若在区域上点点可微则称函数在区域上可微。
定理1  (可微的必要条件)
  若在可微则在(的偏导数必存在,且
证  因为函数在可微,则其全增量可以表为
因为上式对任意的都成立故令,得全增量转化为偏增量

连续,偏导数存在可微三者之间的关系可用以下框圖表示:


由此可看出一元函数与二元函数的本质差别,对一元函数来说可导与可微等价,但对二元函数可微是比偏导数存在更强的一个概念
例2  证明:在点处的偏导数存在,但在点处不可微
所以在点处的偏导数存在。
(2)用反证法证明在点处不可微若在点处可微,则茬此点有但
所以在点处不可微。此例说明偏导数存在不能保证全微分存在

§3   多元函数求导复合函数的求导法则


一元复合函数导数的“鏈式法则”在一元函数微分学中起重要作用。现将其推广到多元函数求导复合函数
定理1  设在区域D上有连续的偏导数,在区间上可微且,则复合函数在区间上可微且

证  设给一个增量有对应增量,则z的对应增量为

因为的偏导数连续所以对于是可微,即


用同样的方法可紦定理推广到复合函数的中间变量多于两个的情形。此定理还可推广到中间变量不是一元函数的情形例如,设复合而得函数即
如果都茬点有对与的偏导数,有连续的偏导数则有
更一般地,若,假定皆存在且连续,则有
第三章曾简单地阐明了什么是隐函数及其有关嘚问题并就方程确定为的隐函数,利用一元函数的复合函数求导法求隐函数的导数和那里的情形类似,下面介绍由方程和方程组所确萣的隐函数的求导法
下面介绍的定理给出隐函数存在的条件及其导数的求法。
隐函数存在定理  设函数在点的某邻域内具有连续的偏导数且
,则方程在点的某一邻域内恒有能唯一确定一个单值连续且有连续导数的函数它满足条件,并有
公式(2)就是隐函数的求导公式
這个定理的证明从略。现仅就公式(2)作如下推导:
将方程(1)所确定的函数代入(1)得恒等式

因为连续,且所以存在的一个邻域,茬这个邻域内于是得


如果的二阶偏导数也都连续,我们可以把等式(2)的两端看作的复合函数再一次求导即得
在几何上它表示两曲面嘚交线,因此只有一个独立的变量不妨设为,则(5)确定了两个函数求。
由链式法则(5)式两端分别对求导,并注意都是的函数便得
这是关于及的二元线性方程组,当系数行列式时则

其中称为,对的雅可比()行列式简记为。

§5   微分法在几何上的应用


一、空间曲线的切线与法平面
1、设曲线的参数方程为
且在点可导且导数不全为零。设对应点对应点,则割线的方程为
当沿时 (割线的极限位置矗线)称为在点的切线(如图5-3)。其方程为

称为曲线在点的切向量过点而与切线垂直的平面称为在的法平面,其方程为

例1  求 在点处的切线及法平面


例2  设曲线为:,求上任一点处的切线和法平面方程
二、曲面的切平面与法线
设曲面的方程为,且连续过任作曲线(如圖5-4),其方程为
设 ,则由上式知 ,即⊥由的任意性,得上过点的一切曲线的切线在同一平面上此平面称为在的切平面。其方程为
過且垂直于切平面的直线称为在的法线法线方程为:
设曲面的方程为 ,当设则
因为分别表示在点沿轴及轴方向的变化率,现讨论沿任哬方向的变化率
1、定义  设由点引射线,
当沿趋于时(如图5-5),若

存在则称此极限值为在点处沿方向的方向导数。记为


由定义可知,就是在点处沿轴轴正向的方向导数,而为沿负向的方向导数
2、方向导数的计算公式
定理1  若在点可微,则函数在该点沿任一方向的方姠导数存
其中是方向的方向余弦
证  因为在点可微,故函数的增量可表为
例1  求函数在点处沿从点到的方向的方向导数
解  这里方向即向量嘚方向,其方向余弦为
例2  求函数在点处沿方向的方向导数
方向导数给出了函数沿某一方向的变化率,但过定点有无穷多个方向则各方姠的变化率不同。在无穷多个方向的变化率中是否有最大变化率;若有最大变化率,如何求出比如,为了研究气温的变化不仅要研究温度函数方向导数,还要研究沿什么方向的方向导数取最大值又比如,在电场中要考虑沿什么方向电位变化最大等等。这个问题可鉯用一个向量来描述:向量的大小等于函数的方向导数的最大值向量的方向等于方向导数取最大值的方向。具备此特征的向量就叫做梯喥其确切的定义如下:
设有函数,在定义域内有一阶连续偏导数过定义域内一点作向量,使向量的大小等于函数在处方向导数的最大徝向量的方向取方向导数取得最大值的方向。称向量为函数在处的梯度记为
定理2  若在可微,则

     当,即与的方向一致时取最大值,於是由梯度定义即知就是在点处的梯度

§7   多元函数求导函数的极值及其求法


一、多元函数求导函数的极值及最值
1、定义  若在点的邻域內有定义,且对有
(或)()则称在点取得极大(或极小)值;点称为函数的极大(或极小)值点。
极大值与极小值统称为极值.极大徝点与极小值点统称为极值点
如:在取得极小值1。又如即对在取得极小值0,对在(00)取得极大值0。
一般极值不易看出故应给出极徝的判别方法,求二元函数极值可化为一元函数来解决
定理1  (必要条件)若在有偏导数,且在取得极值则
证  不妨设在取极大值,则有特别地,若取
应有,即一元函数在取得极大值故有。
同理可得必要条件可改写为。
注:(1)使同时成立的点称为的驻点
(2)此萣理的逆不一定成立,即两个偏导数为0的条件不是充分的仅为必要条件。
如:容易算得,即点为驻点但点不是
函数的极值点。因为茬的任一邻域内总有使函数值为正与为负的点存在如当时,,所以不是极值点
与一元函数一样,为使驻点成为极值点必须附加一萣条件。
定理2  (极值的充分条件)设在点的邻域内有连续的二阶偏导
(ⅰ)若(或则是的极小值点。
(ⅱ)若(或则是的极大值点。
(ⅲ)若则不是的极值点。

得出驻点、、、其次算出

在处,所以是极小值;


在处,所以是极大值;
在、处,因为所以、不是极徝点。

二、条件极值  拉格朗日乘数法


1、引例:(1)求由原点到曲线的最短距离即求在条件限制下使取最小值。
(2)求表面积为而体积最夶的长方体若用表示长,宽高,则要求
这类问题称为条件极值解决的方法如下:
(1)化为无条件极值。如引例(2)有  则
2、拉格朗ㄖ()乘数法
   求函数在条件下的极值。运用乘数法的关健是引进

其中称为乘数由此导出方程组


若是方程组的解,则可能为函数的极值点因为
正是函数在点取极值的必要条件。可见乘数法实际上是通过
引进“待定乘数”将条件极值问题化为函数的极值问题。我们略去有關的理
论推导仅以例子说明具体作法。
例2  制作一个体积为的长方体无盖盒子问长,宽高应为多少,使得材料最省
解  设盒子的长,寬高各为,则体积所用材料的面积为,则

将第一式第二式和第三式两边分别乘上,再两两相减得

这是唯一可能的极值点,因为由問题本身可知最大值一定存在所以最大值就在这个可


能的极值点处取得。也就是说制作体积为的长方体无盖盒子,当长宽,高分别為 时所用材料最省。

例3  周长为的三角形中求其面积为最大者。


解  设为三角形的三边的长则三角形的面积为
其中 。且为了计算方便,我们求在条件下的最大值令
解得这是唯一可能的极值点,因为由问题本身可知最大值一定存在
所以最大值就在这个可能的极值点处取得。所以当时取最大值,也是取最大值
1.求下列函数的偏导数:
3.曲线在点处的切线对于轴的倾角是多少?
4.求下列函数的和:
6.求下列函数的全微分:
7.求函数 当,,时的全微分
8.设,而当,求。
12.求下列复合函数的一阶偏导数(其中具有一阶连续偏导數):
13.求下列函数的,(其中具有二阶连续偏导数)。
14.设其中为可导函数,验证
15.求下列方程所确定的隐函数的导数或偏导数
16.求由下列方程组所确定的隐函数的导数或偏导数:
(2)设,其中具有一阶连续的偏导数,求;
17.设是由方程所确定的隐函数,证奣:
18.设,而是由方程所确定的的函数,其中都具有一阶连续导数,证明:
19.设由方程所确定其中为可微函数,试证
20.求下列曲線在指定点处的切线与法平面方程:
(1)在点;  (2)在点。
21.求出曲线上的点使在该点的切线平行于平面。
22.求下列曲面在指定点处嘚切平面和法线方程:
23.求椭球面上平行于平面的切平面方程
24.求旋转椭球面上点处的切平面与面的夹角的余弦。
25.求函数在点处沿从點到点的方向的方向导数
26.求函数在抛物线上点处,沿着这抛物线在该点处偏向轴正向的切线方向的方向导数
27.求函数在点处沿方向角为的方向的方向导数。
28.求函数在点处沿从点到的方向的方向导数
29.求函数在曲线上点处,沿曲线在该点的切线正方向(对应于增大嘚方向)的方向导数
31.设,都是,的函数,的各偏导数都存在且连续证明
32.问函数在点处沿什么方向的方向导数最大?并求此方姠导数的最大值
35.从斜边之长为的一切直角三角形中,求有最大周长的直角三角形
36.在平面上求一点,使它到及三直线的距离平方の和为最小。
37.求内接于半径为的球且有最大体积的长方体
38.抛物面被平面截成一椭圆,求原点到这椭圆的最长与最短距离
}

我要回帖

更多关于 多元函数求导 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信