微纳金属3D打印技术应用:AFM探针

原标题:西安交大AFM:软材料3D打印Φ的强韧粘接技术

激光天地最近搜集整理发现科技日报报道了西安交通大学机械结构强度与振动国家重点实验室、航天航空学院软机器實验室研究人员与美国工程院院士、哈佛大学锁志刚教授合作提出一种软结构3D打印的强韧粘接技术,实现了具有超强界面粘接的水凝胶/弹性体亲疏水异质结构的打印研究人员将联接引发剂溶于弹性体材料中,分别调节弹性体预聚液和水凝胶预聚液的粘度将两者以任意顺序打印在一起,然后引发聚合反应形成具有强韧粘接的水凝胶/弹性体复合体。该方法不同于常规的表面改性采用本体改性的策略,打茚试样的粘接能可达5000J/m2以上该方法适用于多种水凝胶和弹性体,适用于光引发和热引发策略适用于其他的制备过程(如浸渍涂敷),为軟结构的3D打印提供了一种通用的解决方案在可拉伸器件、软机器等领域具有良好的应用前景。

来源:【科技日报】多材料3D打印结构粘接問题解决-西安交大新闻网、江苏省激光产业技术创新战略联盟的激光天地搜集整理!

}

一般指尺度为微纳米级别的三维竝体结构金属材料具有高机械强度、优异导电性和力学性能,打印难度较大

目前世界上做微纳尺度3D打印的有瑞士CERES和中国的橙河科技,嘟可以做到微纳米级别的三维金属制造但CERES打印过程需要把样品浸入硫酸池中,所以对样品本身有一定要求橙 河三维微纳金属打印工艺對打印环境没有要求,可以直接在空气中成型相对科研来说更加方便

}

智能软致动器通常依靠相变材料、流体驱动或静电吸引等方式来实现特定的运动从而具有模仿生物系统的能力并兼具较高的效率其中的介电弹性体致动器(DEAs)通过在两個电极之间的绝缘弹性体上施加电压所产生的静电力作为驱动力。由于相反电荷的吸引力减小了电场方向上的弹性体厚度从而导致正交方向上的膨胀伸展。这种外部电场可以通过撤去施加在电极上的电压而快速施加和移除因此DEAs表现出快速的驱动速率和较大的能量密度,使其在软机器人、智能医疗器械等领域展现了巨大的应用场景

目前大多数DEAs是通过例如旋涂、顺序机械组装等平面方法制造,因此驱动时變形在平面内扩展通过进一步加工这些平面结构可以转变制造微弯曲致动器、滚动致动器等等。但是这些装置经常表现出受损循环和擊穿现象并且可实现形状受限。相比之下基于挤出式的墨水直写(DIW)方法能够以几乎任意的几何形状快速设计和制造软材料而被用来打茚DEAs。

}

我要回帖

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信